

Comprehensive Energy Audit For Kwigillingok Washeteria

Prepared For Native Village of Kwigillingok

August 24, 2016

Prepared By: Bailey Gamble, Kevin Ulrich

Alaska Native Tribal Health Consortium 4500 Diplomacy Drive, Suite 454 Anchorage, AK 99508

Table of Contents

PREFACE	3
ACKNOWLEDGMENTS	3
1. EXECUTIVE SUMMARY	4
2. AUDIT AND ANALYSIS BACKGROUND	8
2.1 Program Description	8
2.2 Audit Description	8
2.3. Method of Analysis	9
2.4 Limitations of Study	10
3. Kwigillingok Washeteria	11
3.1. Building Description	11
3.2 Predicted Energy Use	16
3.2.1 Energy Usage / Tariffs	16
3.2.2 Energy Use Index (EUI)	19
3.3 AkWarm© Building Simulation	20
4. ENERGY COST SAVING MEASURES	22
4.1 Summary of Results	22
4.2 Interactive Effects of Projects	23
5. ENERGY EFFICIENCY ACTION PLAN	29
APPENDICES	30
Appendix A – Scanned Energy Billing Data	31
Appendix B – Energy Audit Report – Project Summary	35
Appendix C – Actual Fuel Use versus Modeled Fuel Use	37
Appendix D - Electrical Demands	39

PREFACE

This energy audit was conducted using funds provided by the United States Department of Agriculture as part of the Rural Alaskan Village Grant (RAVG) program. Coordination with the Native Village of Kwigillingok has been undertaken to provide maximum accuracy in identifying audits and coordinating potential follow up retrofit activities.

The Rural Energy Initiative at the Alaska Native Tribal Health Consortium (ANTHC) prepared this document for the Native Village of Kwigillingok, Alaska. The authors of this report are Bailey Gamble, Mechanical Engineer I; and Kevin Ulrich, Assistant Engineering Project Manager and Energy Manager in Training (EMIT).

The purpose of this report is to provide a comprehensive document of the findings and analysis that resulted from an energy audit conducted in May of 2016 by the Rural Energy Initiative of ANTHC. This report analyzes historical energy use and identifies costs and savings of recommended energy conservation measures. Discussions of site-specific concerns, non-recommended measures, and an energy conservation action plan are also included in this report.

ACKNOWLEDGMENTS

The ANTHC Energy Projects Group gratefully acknowledges the assistance of Water Treatment Plant Operator John Carter, Native Village of Kwigillingok Tribal Administrator Andrew Beaver and Tribal Finance Officer Richard John, and Kwig Power Company representative Diane Atti.

1. EXECUTIVE SUMMARY

This report was prepared for the Native Village of Kwigillingok. The scope of the audit focused on Kwigillingok Washeteria. The scope of this report is a comprehensive energy study, which included an analysis of building shell, interior and exterior lighting systems, heating and ventilation systems, and plug loads.

Based on electricity and fuel oil prices in effect at the time of the audit, the total predicted energy costs are \$37,288 per year. Fuel represents the largest portion with an annual cost of approximately \$20,893. Electricity represents the remaining portion, with an annual cost of approximately \$16,394. This includes about \$9,787 paid by the village and about \$6,607 paid by the Power Cost Equalization (PCE) program through the State of Alaska.

The State of Alaska PCE program provides a subsidy to rural communities across the state to lower electricity costs and make energy affordable in rural Alaska. In Kwigillingok, the cost of electricity without PCE is \$0.67/kWh and the cost of electricity with PCE is \$0.40/kWh.

There is a heat recovery system that supplies recovered heat from the power plant to meet the majority of the heating demand in the Water Treatment Plant. Extending this heat recovery system over to the Washeteria could save the village an additional 3,000 gallons of fuel per year (\$13,950 per year at current fuel prices) on top of the proposed retrofit savings.

An energy audit report was also developed for the Kwigillingok Water Treatment Plant. This report compliments the Washeteria energy audit. This report will be distributed separately from the Kwigillingok Washeteria report.

Table 1.1 lists the total usage of electricity and #1 heating oil in the Kwigillingok Washeteria before and after the proposed retrofits.

Table 1.1: Predicted Annual Fuel Use for the Washeteria

Predicted Annual Fuel Use					
Fuel Use	Existing Building	With Proposed Retrofits			
Electricity	24,469 kWh	21,984 kWh			
#1 Oil	4,493 gallons	3,626 gallons			

Benchmark figures facilitate comparing energy use between different buildings. Table 1.2 lists several benchmarks for the audited building. More details can be found in section 3.2.2.

Table 1.2: Building Benchmarks for the Washeteria

Building Benchmarks						
Description	EUI	EUI/HDD	ECI			
Description	(kBtu/Sq.Ft.)	(Btu/Sq.Ft./HDD)	(\$/Sq.Ft.)			
Existing Building	411.3	31.66	\$22.67			
With Proposed Retrofits	336.6	25.91	\$19.20			
EUI: Energy Use Intensity - The annual site energy consumption divided by the structure's conditioned area. EUI/HDD: Energy Use Intensity per Heating Degree Day. ECI: Energy Cost Index - The total annual cost of energy divided by the square footage of the conditioned space in the building.						

Table 1.3 below summarizes the energy efficiency measures analyzed for the Kwigillingok Washeteria. Listed are the estimates of the annual savings, installed costs, and two different financial measures of investment return.

Table 1.3: Summary of Recommended Energy Efficiency Measures

	PRIORITY LIST – ENERGY EFFICIENCY MEASURES							
Rank	Feature	Improvement Description	Annual Energy Savings	Installed Cost	Savings to Investment Ratio, SIR ¹	Simple Payback (Years) ²	CO2 Savings	
1	Setback Thermostat: Washeteria	Implement a heating setback of 60 deg F in the Washeteria during unoccupied hours.	\$1,353	\$200	90.74	0.1	6,226.1	
2	Ventilation	Clean dryer lint traps regularly so that dryers don't have to run as long and plenum vent doesn't have to run as often.	\$777	\$500	20.04	0.6	3,724.0	
3	Lighting - Power Retrofit: Front Office Lights	Replace with new energy-efficient LED lighting.	\$124	\$160	9.06	1.3	646.3	
4	Lighting - Power Retrofit: Main Room Lights	Replace with new energy-efficient LED lighting.	\$494	\$640	9.06	1.3	2,585.0	
5	Generic Clothes Drying Load	Replace broken solenoid valves with Belimo valves to improve dryer efficiency and reduce electrical consumption and run time.	\$1,533	\$3,000	6.73	2.0	7,194.7	
6	Lighting - Power Retrofit: Entryway Light	Replace with new energy-efficient LED lighting.	\$23	\$60	4.53	2.6	121.5	

		ORITY LIST – ENER	Annual		Savings to	Simple	
Damle	Fastura	Improvement	Energy	Installed	Investment	Payback	CO ₂
Rank 7	Feature Heating	Description Clean boilers,	Savings	Cost \$8,000	Ratio, SIR ¹ 2.63	(Years) ² 6.5	Savings 4,719.3
,	Ventilation, and Domestic Hot Water (DHW)	replace hi-lo limits controllers, install larger expansion tank to address boiler #3 expansion issues, reprogram Tekmar boiler controller.	\$1,039 + \$200 Maint. Savings	\$0,000	2.63	6.5	4,/17.3
8	Lighting - Combined Retrofit: Boiler Room Lights	Replace with new energy-efficient LED lighting, replace manual switching with occupancy sensor.	\$205	\$980	2.46	4.8	1,071.2
9	Lighting - Power Retrofit: Bathroom 1 Light 1	Replace with new energy-efficient LED lighting.	\$4	\$20	2.39	4.9	21.4
10	Lighting - Power Retrofit: Bathroom 1 Light 2	Replace with new energy-efficient LED lighting	\$8	\$40	2.39	4.9	42.7
11	Lighting - Power Retrofit: Bathroom 2 Light 2	Replace with new energy-efficient LED lighting	\$4	\$20	2.39	4.9	21.4
12	Lighting - Power Retrofit: Bathroom 2 Light 1	Replace with new energy-efficient LED lighting	\$8	\$40	2.39	4.9	42.7
13	Lighting - Power Retrofit: Bathroom 1 Light 3	Replace with new energy-efficient LED lighting	\$8	\$40	2.30	5.1	41.0
14	Lighting - Power Retrofit: Storage Room Lights	Replace with new energy-efficient LED lighting	\$23	\$120	2.22	5.2	120.3
15	Air Tightening	Perform air sealing to reduce air leakage by 5%.	\$97	\$500	1.78	5.2	444.2
16	Lighting - Power Retrofit: Mop Room Lights	Replace with new energy-efficient LED lighting	\$1	\$20	0.48	24.7	4.2
17	Lighting - Power Retrofit: Dryer Plenum Lights	Replace with new energy-efficient LED lighting	\$2	\$60	0.46	25.8	12.2
	TOTAL, all measures		\$5,703 + \$200 Maint. Savings	\$14,400	5.62	2.4	27,038.2

Table Notes:

¹ Savings to Investment Ratio (SIR) is a life-cycle cost measure calculated by dividing the total savings over the life of a project (expressed in today's dollars) by its investment costs. The SIR is an indication of the profitability of a measure; the higher the SIR, the more profitable the project. An SIR greater than 1.0 indicates a cost-effective project (i.e. more savings than cost). Remember that this profitability is based on the position of that Energy Efficiency Measure (EEM) in the overall list and assumes that the measures above it are implemented first.

² Simple Payback (SP) is a measure of the length of time required for the savings from an EEM to payback the investment cost, not counting interest on the investment and any future changes in energy prices. It is calculated by dividing the investment cost by the expected first-year savings of the EEM.

With all of these energy efficiency measures in place, the annual utility cost can be reduced by \$5,698 per year, or 15.3% of the buildings' total energy costs. These measures are estimated to cost \$14,400, for an overall simple payback period of 2.4 years.

Table 1.4 below is a breakdown of the annual energy cost across various energy end use types, such as Space Heating and Water Heating. The first row in the table shows the breakdown for the building as it is now. The second row shows the expected breakdown of energy cost for the building assuming all of the retrofits in this report are implemented. Finally, the last row shows the annual energy savings that will be achieved from the retrofits.

Annual Energy Cost Estimate							
Description	Space	Water	Ventilation	Clothes	Lighting	Other	Total
Description	Heating	Heating	Fans	Drying	Lighting	Electrical	Cost
Existing Building	\$7,361	\$3,408	\$1,800	\$12,778	\$3,103	\$8,837	\$37,288
With Proposed	\$5,654	\$3,148	\$1,565	\$10,195	\$2,190	\$8,837	\$31,589
Retrofits							
Savings	\$1,707	\$260	\$235	\$2,583	\$913	\$0	\$5,698

Table 1.4: Detailed Breakdown of Energy Costs in the Building

2. AUDIT AND ANALYSIS BACKGROUND

2.1 Program Description

This audit included services to identify, develop, and evaluate energy efficiency measures at the Kwigillingok Washeteria. The scope of this project included evaluating building shell, lighting and other electrical systems, and HVAC equipment, motors and pumps. Measures were analyzed based on life-cycle-cost techniques, which include the initial cost of the equipment, life of the equipment, annual energy cost, annual maintenance cost, and a discount rate of 3.0%/year in excess of general inflation.

2.2 Audit Description

Preliminary audit information was gathered in preparation for the site survey. The site survey provides critical information in deciphering where energy is used and what opportunities exist within a building. The entire site was surveyed to inventory the following to gain an understanding of how each building operates:

- Building envelope (roof, windows, etc.)
- Heating and ventilation equipment
- Lighting systems and controls
- Building-specific equipment

The building site visit was performed to survey all major building components and systems. The site visit included detailed inspection of energy consuming components. Summary of building occupancy schedules, operating and maintenance practices, and energy management programs provided by the building manager were collected along with the system and components to determine a more accurate impact on energy consumption.

Details collected from Kwigillingok Washeteria enable a model of the building's energy usage to be developed, highlighting the building's total energy consumption, energy consumption by specific building component, and equivalent energy cost. The analysis involves distinguishing the different fuels used on site, and analyzing their consumption in different activity areas of the building.

Kwigillingok Washeteria is classified as being made up of the following activity areas:

1) Washeteria: 1,645 square feet

In addition, the methodology involves taking into account a wide range of factors specific to the building. These factors are used in the construction of the model of energy used. The factors include:

- Occupancy hours
- Local climate conditions
- Prices paid for energy

2.3. Method of Analysis

Data collected was processed using AkWarm© Energy Use Software to estimate energy savings for each of the proposed energy efficiency measures (EEMs). The recommendations focus on the building envelope; HVAC; lighting, plug load, and other electrical improvements; and motor and pump systems that will reduce annual energy consumption.

EEMs are evaluated based on building use and processes, local climate conditions, building construction type, function, operational schedule, existing conditions, and foreseen future plans. Energy savings are calculated based on industry standard methods and engineering estimations.

Our analysis provides a number of tools for assessing the cost effectiveness of various improvement options. These tools utilize **Life-Cycle Costing**, which is defined in this context as a method of cost analysis that estimates the total cost of a project over the period of time that includes both the construction cost and ongoing maintenance and operating costs.

Savings to Investment Ratio (SIR) = Savings divided by Investment

Savings includes the total discounted dollar savings considered over the life of the improvement. When these savings are added up, changes in future fuel prices as projected by the Department of Energy are included. Future savings are discounted to the present to account for the time-value of money (i.e. money's ability to earn interest over time). The **Investment** in the SIR calculation includes the labor and materials required to install the measure. An SIR value of at least 1.0 indicates that the project is cost-effective—total savings exceed the investment costs.

Simple payback is a cost analysis method whereby the investment cost of a project is divided by the first year's savings of the project to give the number of years required to recover the cost of the investment. This may be compared to the expected time before replacement of the system or component will be required. For example, if a boiler costs \$12,000 and results in a savings of \$1,000 in the first year, the payback time is 12 years. If the boiler has an expected life to replacement of 10 years, it would not be financially viable to make the investment since the payback period of 12 years is greater than the project life.

The Simple Payback calculation does not consider likely increases in future annual savings due to energy price increases. As an offsetting simplification, simple payback does not consider the need to earn interest on the investment (i.e. it does not consider the time-value of money). Because of these simplifications, the SIR figure is considered to be a better financial investment indicator than the Simple Payback measure.

Measures are implemented in order of cost-effectiveness. The program first calculates individual SIRs, and ranks all measures by SIR, higher SIRs at the top of the list. An individual measure must have an individual SIR>=1 to make the cut. Next the building is modified and resimulated with the highest ranked measure included. Now all remaining measures are reevaluated and ranked, and the next most cost-effective measure is implemented. AkWarm goes through this iterative process until all appropriate measures have been evaluated and installed.

It is important to note that the savings for each recommendation is calculated based on implementing the most cost effective measure first, and then cycling through the list to find the next most cost effective measure. Implementation of more than one EEM often affects the savings of other EEMs. The savings may in some cases be relatively higher if an individual EEM is implemented in lieu of multiple recommended EEMs. For example implementing a reduced operating schedule for inefficient lighting will result in relatively high savings. Implementing a reduced operating schedule for newly installed efficient lighting will result in lower relative savings, because the efficient lighting system uses less energy during each hour of operation. If multiple EEM's are recommended to be implemented, AkWarm calculates the combined savings appropriately.

Cost savings are calculated based on estimated initial costs for each measure. Installation costs include labor and equipment to estimate the full up-front investment required to implement a change. Costs are derived from Means Cost Data, industry publications, and local contractors and equipment suppliers.

2.4 Limitations of Study

All results are dependent on the quality of input data provided, and can only act as an approximation. In some instances, several methods may achieve the identified savings. This report is not intended as a final design document. The design professional or other persons following the recommendations shall accept responsibility and liability for the results.

3. KWIGILLINGOK WASHETERIA

3.1. Building Description

The 1,645 square foot Kwigillingok Washeteria was constructed in 2010, with a normal occupancy of 4 people. The number of hours of operation for this building average 7.7 hours per day, considering all seven days of the week. The Kwigillingok Washeteria offers laundromat and shower services to the village.

The washeteria has four boilers that deliver heat to a hydronic heating system. The hydronic system provides space heating for the building, heats water for the five washers and two showers and supplies heat to the four dryers. Extending the heat recovery system from the power plant to the washeteria could help to meet the building's year round demand for heat and reduce fuel consumption in the boilers by an estimated 3000 gallons per year on top of proposed retrofit savings.

An air handling system serves to regulate the moisture level in the washeteria. Air vents regulate the temperature in the boiler room and the dryer plenum.

Figure 1: Washing machines in Kwigillingok Washeteria

Description of Building Shell

The exterior walls of the washeteria are constructed with single stud 2x6 lumber construction with a 16-inch offset. The walls have approximately 5.5 inches polyurethane panel insulation in good condition. There is approximately 1,885 square feet of wall space in the WTP.

The washeteria has a cathedral ceiling with 2x6 lumber construction. The roof has standard framing and a 24-inch offset. The ceiling has approximately 5.5 inches of insulated

polyurethane panels in good condition. There is approximately 1,734 square feet of roof space in the building.

The washeteria is built on pilings with the floor constructed of 2x10 joists with a 16-inch offset. The floor is insulated with about 5.5 inch polyurethane panels in good condition. There is approximately 1,645 square feet of floor space in the building.

The heated portion of the building has six total windows, each of which has triple-pane glass and measurements of approximately 4' x 3'. There are two South facing windows, one in the office and one in the storage room, three East facing windows in the main laundry room and one North facing window in the boiler room.

There are insulated metal doors on the front (South) and back (North) side of washeteria. The doors are fairly well sealed. The front entrance door measures $3' \times 6'8''$ and has an arctic entry. The back door is a single door measuring $3' \times 6'8''$.

Description of Heating Plants

The Heating Plants used in the building are:

Boiler 1

Donci	1	
	Nameplate Information:	Burnham Model # MP0231-GB2S
	Fuel Type:	#1 Oil
	Input Rating:	177,000 BTU/hr
	Steady State Efficiency:	72 %
	Idle Loss:	1.5 %
	Heat Distribution Type:	Glycol
	Boiler Operation:	All Year
	Fire Rate:	1.65 gallons/hour
Boiler	2	
	Nameplate Information:	Burnham Model # MP0231-GB2S
	Fuel Type:	#1 Oil
	Input Rating:	177,000 BTU/hr
	Steady State Efficiency:	72 %
	Idle Loss:	1.5 %
	Heat Distribution Type:	Glycol
	Boiler Operation:	All Year
	Fire Rate:	1.65 gallons/hour
Boiler	3	
	Nameplate Information:	Burnham Model # MP0231-GB2S
	Fuel Type:	#1 Oil
	Input Rating:	177,000 BTU/hr
	Steady State Efficiency:	72 %
	Idle Loss:	1.5 %
	Heat Distribution Type:	Glycol
	Boiler Operation:	All Year
	Fire Rate:	1.65 gallons/hour

Boiler 4

Nameplate Information:	Burnham Model # MP0231-GB2S
Fuel Type:	#1 Oil
Input Rating:	177,000 BTU/hr
Steady State Efficiency:	72 %
Idle Loss:	1.5 %
Heat Distribution Type:	Glycol
Boiler Operation:	All Year
Fire Rate:	1.65 gallons/hour

All of the heat required for space heating, generating hot water for washers and showers and drying clothes in the washeteria is provided by four Burnham boilers. At the time of the energy audit, boiler #3 was out of commission due to expansion issues. Each boiler has its own circulating pump to circulate glycol through.

Figure 2: Existing fuel oil boilers.

Space Heating Distribution System

The majority of the space heating in the washeteria is provided by fin type baseboard heaters. There is one unit heater in the boiler room with a rating of 4.2 MBH.

Domestic Hot Water System

All water for the washeteria is heated by a 119 gallon hydronic hot water maker with an 8 gallon/minute continuous rating with a 70 degree F temperature rise.

Heat Recovery Information

The washeteria does not currently receive recovered heat. A heat recovery system currently brings recovered heat from the power plant to the water treatment plants to meet the majority of the water heating demand at that building. There is more recovered heat available than what the water treatment plant demands, especially during summer months when there is no need to heat anything other than water for the bathroom sink. The washeteria, however, demonstrates a fairly consistent demand for heat year round for washers, dryers and showers making it a logical destination for recovered heat.

The heat recovery system could be expanded to reach the washeteria. This would require an investment of approximately \$200,000 and would allow the washeteria to reduce fuel consumption by an additional 3000 gallons per year (about \$14,000/year) on top of the fuel savings associated with other recommended retrofits, bringing the total fuel consumption of the washeteria to less than 800 gallons/year.

Description of Building Ventilation System

The building ventilation system consists of three main components:

- An air handling unit meant to control moisture levels in the washeteria when it's occupied.
- A cooling fan meant to keep temperatures in the boiler room from exceeding 85 degrees F.
- A dryer plenum make-up air unit that runs when the dryers are operating.

<u>Lighting</u>

There are a total of 30 light fixtures containing 92 bulbs in the washeteria. The majority of fixtures contain 4' T8 fluorescent bulbs. Table 3.1 shows a breakdown of lighting by bulb type.

Table 3.1: Breakdown of Lighting by Bulb Type

Type of bulb	Total Number of Bulbs	Location(s)
4' T8 fluorescent	80	Boiler room, dryer plenum, main room,
		front office, storage room, bathrooms, entry
2' T8 fluorescent	10	Mop room, bathrooms
70 W high pressure sodium	2	Exterior

Lighting in the in the washeteria consumes approximately 4631.9 kWh annually constituting about 19% of the building's electrical consumption.

Plug Loads

The washeteria has a variety of electronics including a TV, radio, microwave and some other miscellaneous loads that require a plug into an electrical outlet. The use of these items consumes about 526 kWh annually.

Major Equipment

Table 3.2 contains the details on each of the major mechanical components found in the washeteria.

Table 3.2:	Major Equipment List	
------------	-----------------------------	--

Major Pumps + Motors	Purpose	Motor Size	Operating Schedule	Annual Energy Consumption (kWh)
Water Heater Circulating Pump	Circulating heated glycol through hot water maker	0.2 HP	~ 75% of washeteria operating hours	371
Building Heat Circulating Pump	Circulate heated glycol through unit heater and baseboards	0.85 HP	Always on Oct- May	3,225
Dryer Circulating Pump	Circulate heated glycol through hydronic dryers	0.89 HP	IP ~ 7 hours per 1,4 day, 6 days/week	
Fuel Pump	Supply fuel to boilers	0.35 HP	~ 85% of the time washeteria is demanding heat.	1,413
Small Washing Machine x 3	Washing clothes	1.06 HP	~ 50% of washeteria operating hours	3,347
Medium Washing Machine	Washing clothes	1.17 HP	~ 50% of washeteria operating hours	1,230
Large Washing Machine	Washing clothes	1.34 HP	~ 50% of washeteria operating hours	2,812
Lift Station Effluent Pump	Pump washeteria and clinic effluent to wastewater lagoon	2.28 HP	~ half an hour per day	266
Hydronic Dryer x 4	Drying clothes	2 x .25 HP	~ 7 hours per day, 6 days/week	818



Figure 3: Hydronic Dryers in Kwigillingok Washeteria.

3.2 Predicted Energy Use

3.2.1 Energy Usage / Tariffs

The electric usage profile charts (below) represents the predicted electrical usage for the building. If actual electricity usage records were available, the model used to predict usage was calibrated to approximately match actual usage. The electric utility measures consumption in kilowatt-hours (kWh) and maximum demand in kilowatts (kW). One kWh usage is equivalent to 1,000 watts running for one hour. One KW of electric demand is equivalent to 1,000 watts running at a particular moment.

The fuel oil usage profile shows the fuel oil usage for the building. Fuel oil consumption is measured in gallons. One gallon of #1 Fuel Oil provides approximately 132,000 BTUs of energy.

The Kwig Power Company (KPC) is the electric utility and runs the power plant in the Native Village of Kwigillingok. The utility provides electricity to the residents of Kwigillingok as well as all commercial and public facilities.

The average cost for each type of fuel used in this building is shown below in Table 3.3. This figure includes all surcharges, subsidies, and utility customer charges:

Table 3.3:	Energy Rates	by Fuel Type	in Kwigillingok
------------	---------------------	--------------	-----------------

Average Energy Cost								
Description	Average Energy Cost							
Electricity	\$ 0.6700/kWh							
#1 Oil	\$ 4.65/gallons							

3.2.1.1 Total Energy Use and Cost Breakdown

At current rates, the Native Village of Kwigillingok pays approximately \$37,288 annually for electricity and other fuel costs for the Kwigillingok Washeteria.

Figure 4 below reflects the estimated distribution of costs across the primary end uses of energy based on the AkWarm[©] computer simulation. Comparing the "Retrofit" bar in the figure to the "Existing" bar shows the potential savings from implementing all of the energy efficiency measures shown in this report.

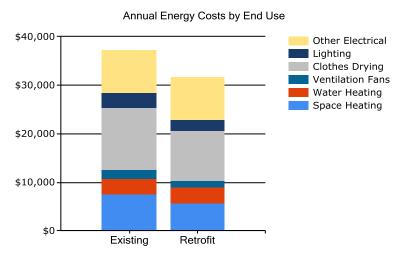


Figure 4: Annual Energy Costs by End Use.

Figure 5 below shows how the annual energy cost of the building splits between the different fuels used by the building. The "Existing" bar shows the breakdown for the building as it is now; the "Retrofit" bar shows the predicted costs if all of the energy efficiency measures in this report are implemented.

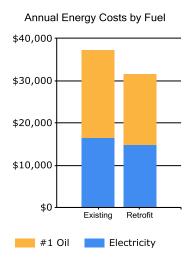


Figure 5: Annual Energy Costs by Fuel Type.

Figure 6 below addresses only Space Heating costs. The figure shows how each heat loss component contributes to those costs; for example, the figure shows how much annual space heating cost is caused by the heat loss through the Walls/Doors. For each component, the space heating cost for the Existing building is shown (blue bar) and the space heating cost assuming all retrofits are implemented (yellow bar) are shown.

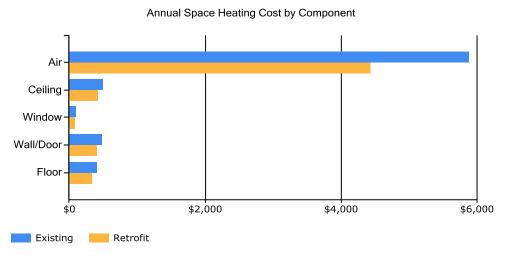


Figure 6: Annual Space Heating Cost by Component.

The tables below show AkWarm's estimate of the monthly fuel use for each of the fuels used in the building. For each fuel, the fuel use is broken down across the energy end uses. Note, in the tables below "DHW" refers to Domestic Hot Water heating.

lectrical Consur	ectrical Consumption (kWh)											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Space Heating	147	131	124	82	46	22	0	0	37	73	104	148
DHW	15	14	15	15	15	15	15	15	15	15	15	15
Ventilation Fans	228	208	228	221	228	221	228	228	221	228	221	228
Clothes Drying	244	222	244	236	244	236	244	244	236	244	236	244
Lighting	433	395	433	419	338	327	338	338	327	433	419	433
Other Electrical	1355	1235	1355	1311	793	767	793	793	767	1355	1311	1355

Table 3.5: Fuel Oil Consumption Records by Category

Fuel Oil #1 Consumption (Gallons)												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Space Heating	242	216	202	130	65	21	0	0	48	113	169	243
DHW	58	53	58	57	61	60	63	63	59	60	57	58
Clothes Drying	191	174	193	190	201	199	208	208	196	197	188	191

3.2.2 Energy Use Index (EUI)

Energy Use Index (EUI) is a measure of a building's annual energy utilization per square foot of building. This calculation is completed by converting all utility usage consumed by a building for one year, to British Thermal Units (Btu) or kBtu, and dividing this number by the building square footage. EUI is a good measure of a building's energy use and is utilized regularly for comparison of energy performance for similar building types. The Oak Ridge National Laboratory (ORNL) Buildings Technology Center under a contract with the U.S. Department of Energy maintains a Benchmarking Building Energy Performance Program. The ORNL website determines how a building's energy use compares with similar facilities throughout the U.S. and in a specific region or state.

Source use differs from site usage when comparing a building's energy consumption with the national average. Site energy use is the energy consumed by the building at the building site only. Source energy use includes the site energy use as well as all of the losses to create and distribute the energy to the building. Source energy represents the total amount of raw fuel that is required to operate the building. It incorporates all transmission, delivery, and production losses, which allows for a complete assessment of energy efficiency in a building. The type of utility purchased has a substantial impact on the source energy use of a building. The EPA has determined that source energy is the most comparable unit for evaluation purposes and overall global impact. Both the site and source EUI ratings for the building are provided to understand and compare the differences in energy use.

Building Site EUI = <u>(Electric Usage in kBtu + Fuel Usage in kBtu)</u> Building Square Footage

Building Source EUI = (Electric Usage in kBtu X SS Ratio + Fuel Usage in kBtu X SS Ratio) Building Square Footage

where "SS Ratio" is the Source Energy to Site Energy ratio for the particular fuel.

Table 3.6: Kwigillingok Washeteria EUI Calculations

Energy Type	Building Fuel Use per Year	Site Energy Use per Year, kBTU	Source/Site Ratio	Source Energy Use per Year, kBTU					
Electricity	24,469 kWh	83,514	3.340	278,936					
#1 Oil	4,493 gallons	593,094	1.010	599,025					
Total		676,608		877,961					
BUILDING AREA		1,645	Square Feet						
BUILDING SITE EUI		411	kBTU/Ft²/Yr						
BUILDING SOURCE EU	kBTU/Ft ² /Yr								
* Site - Source Ratio data is provided by the Energy Star Performance Rating Methodology for Incorporating									

Source Energy Use document issued March 2011.

Table 3.7: Kwigillingok Washeteria Building Benchmarks

Building Benchmarks			
Description	EUI	EUI/HDD	ECI
Description	(kBtu/Sq.Ft.)	(Btu/Sq.Ft./HDD)	(\$/Sq.Ft.)
Existing Building	411.3	31.66	\$22.67
With Proposed Retrofits	336.6	25.91	\$19.20
EUI: Energy Use Intensity - The annual site e EUI/HDD: Energy Use Intensity per Heating ECI: Energy Cost Index - The total annual cos building.	Degree Day.	•	

3.3 AkWarm© Building Simulation

An accurate model of the building performance can be created by simulating the thermal performance of the walls, roof, windows and floors of the building. The HVAC system and central plant are modeled as well, accounting for the outside air ventilation required by the building and the heat recovery equipment in place.

The model uses local weather data and is trued up to historical energy use to ensure its accuracy. The model can be used now and in the future to measure the utility bill impact of all types of energy projects, including improving building insulation, modifying glazing, changing air handler schedules, increasing heat recovery, installing high efficiency boilers, using variable air volume air handlers, adjusting outside air ventilation and adding cogeneration systems.

For the purposes of this study, the Kwigillingok Washeteria was modeled using AkWarm© energy use software to establish a baseline space heating and cooling energy usage. Climate data from Kwigillingok was used for analysis. From this, the model was be calibrated to predict the impact of theoretical energy savings measures. Once annual energy savings from a particular measure were predicted and the initial capital cost was estimated, payback scenarios were approximated.

Limitations of AkWarm© Models

• The model is based on typical mean year weather data for Kwigillingok. This data represents the average ambient weather profile as observed over approximately 30 years. As such, the gas and electric profiles generated will not likely compare perfectly with actual energy billing information from any single year. This is especially true for years with extreme warm or cold periods, or even years with unexpectedly moderate weather.

• The heating load model is a simple two-zone model consisting of the building's core interior spaces and the building's perimeter spaces. This simplified approach loses accuracy for buildings that have large variations in heating loads across different parts of the building.

The energy balances shown in Section 3.1 were derived from the output generated by the AkWarm[©] simulations.

4. ENERGY COST SAVING MEASURES

4.1 Summary of Results

The energy saving measures are summarized in Table 4.1. Please refer to the individual measure descriptions later in this report for more detail.

Table 4.1: Energy Efficiency Measures

	PRI	ORITY LIST – ENER	GY EFFI		MEASURES	6	
Rank	Feature	Improvement Description	Annual Energy Savings	Installed Cost	Savings to Investment Ratio, SIR ¹	Simple Payback (Years) ²	CO2 Savings
1	Setback Thermostat: Washeteria	Implement a heating setback of 60 deg F in the Washeteria during unoccupied hours.	\$1,353	\$200	90.74	0.1	6,226.1
2	Ventilation	Clean dryer lint traps regularly so that dryers don't have to run as long and plenum vent doesn't have to run as often.	\$777	\$500	20.04	0.6	3,724.0
3	Lighting - Power Retrofit: Front Office Lights	Replace with new energy-efficient LED lighting.	\$124	\$160	9.06	1.3	646.3
4	Lighting - Power Retrofit: Main Room Lights	Replace with new energy-efficient LED lighting.	\$494	\$640	9.06	1.3	2,585.0
5	Generic Clothes Drying Load	Replace broken solenoid valves with Belimo valves to improve dryer efficiency and reduce electrical consumption and run time.	\$1,533	\$3,000	6.73	2.0	7,194.7
6	Lighting - Power Retrofit: Entryway Light	Replace with new energy-efficient LED lighting.	\$23	\$60	4.53	2.6	121.5
7	Heating Ventilation, and Domestic Hot Water (DHW)	Clean boilers, replace hi-lo limits controllers, install larger expansion tank to address boiler #3 expansion issues, reprogram Tekmar boiler controller.	\$1,039 + \$200 Maint. Savings	\$8,000	2.63	6.5	4,719.3
8	Lighting - Combined Retrofit: Boiler Room Lights	Replace with new energy-efficient LED lighting, replace manual switching with occupancy sensor.	\$205	\$980	2.46	4.8	1,071.2
9	Lighting - Power Retrofit: Bathroom 1 Light 1	Replace with new energy-efficient LED lighting.	\$4	\$20	2.39	4.9	21.4

	PRI	ORITY LIST – ENER	GY EFFI		MEASURES		
Rank	Feature	Improvement Description	Annual Energy Savings	Installed Cost	Savings to Investment Ratio, SIR ¹	Simple Payback (Years) ²	CO2 Savings
10	Lighting - Power Retrofit: Bathroom 1 Light 2	Replace with new energy-efficient LED lighting	\$8	\$40	2.39	4.9	42.7
11	Lighting - Power Retrofit: Bathroom 2 Light 2	Replace with new energy-efficient LED lighting	\$4	\$20	2.39	4.9	21.4
12	Lighting - Power Retrofit: Bathroom 2 Light 1	Replace with new energy-efficient LED lighting	\$8	\$40	2.39	4.9	42.7
13	Lighting - Power Retrofit: Bathroom 1 Light 3	Replace with new energy-efficient LED lighting	\$8	\$40	2.30	5.1	41.0
14	Lighting - Power Retrofit: Storage Room Lights	Replace with new energy-efficient LED lighting	\$23	\$120	2.22	5.2	120.3
15	Air Tightening	Perform air sealing to reduce air leakage by 5%.	\$97	\$500	1.78	5.2	444.2
16	Lighting - Power Retrofit: Mop Room Lights	Replace with new energy-efficient LED lighting	\$1	\$20	0.48	24.7	4.2
17	Lighting - Power Retrofit: Dryer Plenum Lights	Replace with new energy-efficient LED lighting	\$2	\$60	0.46	25.8	12.2
	TOTAL, all measures		\$5,703 + \$200 Maint. Savings	\$14,400	5.62	2.4	27,038.2

4.2 Interactive Effects of Projects

The savings for a particular measure are calculated assuming all recommended EEMs coming before that measure in the list are implemented. If some EEMs are not implemented, savings for the remaining EEMs will be affected. For example, if ceiling insulation is not added, then savings from a project to replace the heating system will be increased, because the heating system for the building supplies a larger load.

In general, all projects are evaluated sequentially so energy savings associated with one EEM would not also be attributed to another EEM. By modeling the recommended project sequentially, the analysis accounts for interactive affects among the EEMs and does not "double count" savings.

Interior lighting, plug loads, facility equipment, and occupants generate heat within the building. When the building is in cooling mode, these items contribute to the overall cooling demands of the building; therefore, lighting efficiency improvements will reduce cooling requirements in air-conditioned buildings. Conversely, lighting-efficiency improvements are anticipated to slightly increase heating requirements. Heating penalties were included in the lighting project analysis.

4.3 Building Shell Measures

4.3.1 Air Sealing Measures

Rank	Location		Ex	isting Air Leakage Level (cfm@50/	/75 Pa)	Re	Recommended Air Leakage Reduction (cfm@50/75 Pa)			
15			Aiı	r Tightness estimated as: 2470 cfm	at 50 Pascals	Perform air sealing to reduce air leakage by 5%.				
Installation Cost \$		500	Estimated Life of Measure (yrs)		10	Energy Savings (/yr)	\$97			
Breakev	ven Cost	\$8	391	Savings-to-Investment Ratio		1.8	Simple Payback yrs	5		
Auditors	s Notes: Insta	ll weather stri	ppir	ng on doors to reduce air leakage.						

4.4 Mechanical Equipment Measures

4.4.1 Heating Measure

Rank	Rank Recommendation									
7 Clean boilers, replace hi-lo limits controllers, install larger expansion tank to address boiler #3 expansion issues, reprogram Tekmar										
Installation Cost \$8,000 Estimated Life of Measure (yrs) 20 Energy Savings		Energy Savings (/yr)	\$1,035							
					Maintenance Savings (/yr)	\$200				
Breakeven Cost		\$21,004	Savings-to-Investment Ratio	2.6	Simple Payback yrs	6				
wear. Cl	ean the boiler	rs to improve effic	on tank in line with boiler #3 to brin ciency and reduce idle loss. Replace e often, further reducing idle loss. T	hi-lo limits contr	rollers and reprogram Tekmar bo					

4.4.2 Ventilation System Measures

Rank	Description			Recommen	Recommendation				
2				Clean dryer	Clean dryer lint traps regularly so that dryers don't have to run as				
				long, plenu	m vent doesn't ha	ve to run as oft	en		
Installation Cost \$500 Estimated Life of Measure (yrs)		15	Energy Savings	(/yr)	\$766				
Breakev	Breakeven Cost \$9,876 Savings-to-Investment Ratio			19.8	Simple Payback	yrs	1		
Auditors	s Notes: Clea	n the dryer lint tra	aps and train the operator and was	sheteria employe	es in this routine r	maintenance pr	ocedure. Cleaning the		
	lint traps will increase drying efficiency and reduce dryer run time. This will reduce electrical consumption of the dryers themselves and will also reduce the run time of the dryer plenum air make-up unit, which runs when dryers run. Less air exchange will also reduce heating demands.								

4.4.3 Night Setback Thermostat Measures

Rank Building Space					Recommendation				
1	Washeteria			Implement	Implement a Heating Temperature Unoccupied Setback to 60.0				
				deg F for th	e Washeteria spac	ce.			
Installation Cost \$200 Estimated Life of Measure (yrs)		15	Energy Savings	(/yr)	\$1,352				
Breakeven Cost \$18,131 Savings-to-Investment Ratio			90.7	Simple Payback	yrs	0			
Auditors Notes: Program thermostat to implement a heating setback to 60 degrees F so that less fuel is consumed heating the washeteria when it is unoccupied.									

4.5 Electrical & Appliance Measures

4.5.1 Lighting Measures

The goal of this section is to present any lighting energy conservation measures that may also be cost beneficial. It should be noted that replacing current bulbs with more energy-efficient equivalents will have a small effect on the building heating and cooling loads. The building cooling load will see a small decrease from an upgrade to more efficient bulbs and the heating load will see a small increase, as the more energy efficient bulbs give off less heat.

4.5.1a Lighting Measures – Replace Existing Fixtures/Bulbs

Rank Location			Existing Condition Rec		ecommendation		
3 Front Office Lights		Lights	2 FLUOR (4) T8 4' F32T8 32W Standard Instant		Replace with new	Replace with new energy-efficient LED lighting.	
			StdElectronic with Manual Switching				
Installat	ion Cost	\$1	60 Estimated Life of Measure (yrs)	1	5 Energy Savings	(/yr)	\$124
Breakev	ven Cost	\$1,4	50 Savings-to-Investment Ratio	9.1	1 Simple Payback	yrs	1
Auditors Notes: This room contai		room contains	s two fixtures with four bulbs each to	be replaced wit	h LEDs. LEDs use le	ss energy and la	ast longer allowing for
less frequent bulb replacement.							

Rank Location			Existing Condition	F	Rec	commendation		
4 Main Room Lights		Lights	8 FLUOR (4) T8 4' F32T8 32W Standard Instant			Replace with new energy-efficient LED lighting.		
			StdElectronic with Manual Switching					
Installation Cost \$		\$6	40 Estimated Life of Measure (yrs)	1	15	Energy Savings	(/yr)	\$399
Breakev	en Cost	\$4,5	36 Savings-to-Investment Ratio	7.	'.1	Simple Payback	yrs	2
			s eight fixtures with four bulbs each t	o be replaced w	vith	n LEDs. LEDs use les	ss energy and I	ast longer allowing

Rank Location			Existing Condition Re		ecommendation		
6 Entryway Light		ght I	FLUOR (3) T8 4' F32T8 32W Standard Instant		Replace with new energy-efficient LED lighting.		
		9	StdElectronic with Manual Switching				
Installat	ion Cost	\$6	60 Estimated Life of Measure (yrs)	15	5 Energy Savings	(/yr)	\$23
Breakev	en Cost	\$27	72 Savings-to-Investment Ratio	4.5	5 Simple Payback	yrs	3
Auditors Notes: This room conta frequent bulb replacement.			one fixture with three bulbs to be re	eplaced with LED	Ds. LEDs use less ene	ergy and last lor	nger allowing for less

Rank Location		Exi	Existing Condition Rec		ecommendation				
8 Boiler Room Lights		6 FLUOR (4) T8 4' F32T8 32W Standard Instant StdElectronic with Manual Switching			Replace with new energy-efficient LED lighting an add new occupancy sensor.		ent LED lighting and		
Installat	tion Cost	\$9	980	Estimated Life of Measure (yrs)		15	Energy Savings	(/yr)	\$205
Breakev	ven Cost	\$2,4	407	Savings-to-Investment Ratio		2.5	Simple Payback	yrs	5
Auditors Notes: This room contain turn off when the room is unoccup				•			•	ensure that lights	

Rank	Location	E	Existing Condition R		Rec	Recommendation			
9 Bathroom 1 Light 2		0	2 FLUOR T8 4' F32T8 32W Standard Instant			Replace with new energy-efficient LED lighting.			
		S	StdElectronic with Manual Switching						
Installat	tion Cost	\$40	0 Estimated Life of Measure (yrs)		15	Energy Savings (/yr)	\$8		
Breakev	ven Cost	\$96	6 Savings-to-Investment Ratio	2	2.4	Simple Payback yrs	5		
		•	contains four 2' T8 bulbs to be replac	ced with LEDS.	. LE	Ds use less energy and last long	er allowing for less		

Rank Location		E	Existing Condition Reco		ecommendation			
10 Bathroom 2 Light 1		Light 1 2	2 FLUOR T8 4' F32T8 32W Standard Instant		Replace with new energy-efficient LED lighting.			
_		St	StdElectronic with Occupancy Sensor					
Installat	tion Cost	\$40	Estimated Life of Measure (yrs)	15	5 Energy Savings	(/yr)	\$8	
Breakev	ven Cost	\$96	Savings-to-Investment Ratio	2.4	4 Simple Payback	yrs	5	
		fixture contains t	two 4' bulbs to be replaced with LEI	Ds. LEDs use less	s energy and last lo	nger allowing fo	or less frequent bulb	

Rank	Location	E	kisting Condition		Rec	Recommendation		
11 Bathroom 1 Light 1		0	FLUOR T8 4' F32T8 32W Standard Instant			Replace with new energy-efficient LED lighting.		
		St	StdElectronic with Occupancy Sensor					
Installat	tion Cost	\$20	Estimated Life of Measure (yrs)		15	Energy Savings (/yr)	\$4	
Breakev	ven Cost	\$48	Savings-to-Investment Ratio	2	2.4	Simple Payback yrs	5	
Breakeven Cost Auditors Notes: This fi replacement.		fixture contains t	two 2' bulbs to be replaced with LE	Ds. LEDs use le	ess	energy and last longer allowing f	or less frequent bulb	

Rank	Location	E	xisting Condition	F	Recommendation			
12 Bathroom 2 Light 2		Light 2 FL	FLUOR T8 4' F32T8 32W Standard Instant		Replace with ne	Replace with new energy-efficient LED lighting.		
		St	tdElectronic with Occupancy Sensor	•				
Installat	ion Cost	\$20	Estimated Life of Measure (yrs)	1	L5 Energy Savings	(/yr)	\$4	
Breakev	ven Cost	\$48	Savings-to-Investment Ratio	2.	.4 Simple Payback	yrs	5	
Auditors replacen		fixture contains	two 2' bulbs to be replaced with LE	Ds. LEDs use le	ess energy and last I	onger allowing	for less frequent bulb	

Rank Location			Existing Condition Red			ecommendation			
13 Bathroom 1 Light 3		Light 3 Fl	FLUOR (2) T8 4' F32T8 32W Standard Instant			Replace with new energy-efficient LED lighting.			
		St	StdElectronic with Occupancy Sensor						
Installat	ion Cost	\$40	Estimated Life of Measure (yrs)	1	15	Energy Savings (/yr)	\$8		
Breakev	en Cost	\$92	Savings-to-Investment Ratio	2.	.3	Simple Payback yrs	5		
Breakeven Cost Auditors Notes: This fixto replacement.		fixture contains	two 4' bulbs to be replaced with LE	Ds. LEDs use le	ess e	energy and last longer allowing f	for less frequent bulb		

Rank Location			Existing Condition Reco		ecommendation		
14 Storage Room Lights		m Lights	2 FLUOR (3) T8 4' F32T8 32W Standard Instant		Replace with new energy-efficient LED lighting.		
			StdElectronic with Occupancy Sensor				
Installat	ion Cost	\$1	20 Estimated Life of Measure (yrs)	15	5 Energy Savings	(/yr)	\$23
Breakev	ven Cost	\$2	67 Savings-to-Investment Ratio	2.2	2 Simple Payback	yrs	5
			two fixtures with three bulbs each to	be replaced wit	th LEDs. LEDs use le	ss energy and	last longer allowing for

Rank Location			Existing Condition Red		Rec	ecommendation		
16 Mop Room Lights		Lights F	FLUOR T8 4' F32T8 32W Standard Instant			Replace with new energy-efficient LED lighting.		
		S	StdElectronic with Manual Switching					
Installat	ion Cost	\$2	0 Estimated Life of Measure (yrs)	1	15	Energy Savings (/yr)	\$1	
Breakev	en Cost	\$1	0 Savings-to-Investment Ratio	0).5	Simple Payback yrs	25	
		fixture contains	s two 2' bulbs to be replaced with LE	EDs. LEDs use le	ess	energy and last longer allowing	for less frequent bulb	

Rank	Location	I	Existing Condition	F	Rec	commendation		
17 Dryer Plenum Lights		-	FLUOR (3) T8 4' F32T8 32W Standard Instant			Replace with new energy-efficient LED lighting.		
		0	StdElectronic with Manual Switching					
Installat	tion Cost	\$6	0 Estimated Life of Measure (yrs)	1	15	Energy Savings (/yr)	\$2	
Breakev	ven Cost	\$2	7 Savings-to-Investment Ratio	0.	.5	Simple Payback yrs	26	
Breakeven Cost Auditors Notes: This room conta frequent bulb replacement.			one fixture with three bulbs to be re	eplaced with LEI	Ds.	LEDs use less energy and last	longer allowing for less	

4.5.2 Other Measures

Rank	Location	1	Description of Existing	Ef	Efficiency Recommendation						
5	5 Clothes Dryers				Replace broken solenoid valves with Belimo valves to reduce electrical consumption and run time.						
Installation Cost \$3		\$3,00	00 Estimated Life of Measure (yrs)	15		\$1,639					
Breakeven Cost \$21		\$21,58	39 Savings-to-Investment Ratio	7.2	Simple Payback yrs	2					
Auditors	Auditors Notes: The current solenoid valves are meant to operate in conjunction with customers depositing coins in the dryers and the associated										
timers. The solenoid valves aren't currently closing properly so dryers run longer than necessary. Replace the solenoid with Belimo valves to											
ensure t	ensure that dryers only run when needed to minimize electrical consumption by reducing run time. Cleaning the lint traps, as mentioned in the										

ventilation retrofit, will improve drying efficiency, further reducing electrical consumption and run time.

5. ENERGY EFFICIENCY ACTION PLAN

Through inspection of the energy-using equipment on-site and discussions with site facilities personnel, this energy audit has identified several energy-saving measures. The measures will reduce the amount of fuel burned and electricity used at the site. The projects will not degrade the performance of the building and, in some cases, will improve it.

Several types of EEMs can be implemented immediately by building staff, and others will require various amounts of lead time for engineering and equipment acquisition. In some cases, there are logical advantages to implementing EEMs concurrently. For example, if the same electrical contractor is used to install both lighting equipment and motors, implementation of these measures should be scheduled to occur simultaneously.

ANTHC is currently working with the Native Village of Kwigillingok in an effort to realize the retrofits identified in this report through Rural Alaskan Village Grant (RAVG) program. ANTHC will continue to work with Kwigillingok to secure any additional funding necessary to implement the recommended energy efficiency measures.

APPENDICES

Appendix A – Scanned Energy Billing Data

1. Electricity Billing Data

Kwig Power Company Kwigillingok, AK 99622

Statement

Date	
8/16/2016	

To:

Kwig IRA Council RE: New Laundromat P.O.Box 90 Kwigillingok, Ak 99622

				Amount Due	Amount Enc.	
				-\$3,629.77		
Date		Transaction		Amount	Balance	
12/31/2014	Balance forward				458.50	
01/12/2015	PMT #20577. ck # 26802			-458.50	0.00	
01/31/2015	INV #E19944. Due 01/31/201:	5.		405.94	405.94	
	Comm Facilities, 1,946 @ \$	50.61 = 1,187.06				
	WTP PCE, 1,946 @ \$0.401	4 = -781.12				
02/06/2015	PMT #20639. ck # 26905			-405.94	0.00	
02/28/2015	INV #E20048. Due 02/28/201:	5.		549.29	549.29	
	Comm Facilities, 2,045 @ 5	30.67 = 1,370.15				
	WTP PCE, 2,045 @ \$0.401	4 = -820.86				
03/09/2015	PMT #20701. ck # 27027			-549.29	0.0	
03/31/2015	INV #E20156. Due 03/31/2011			632.28	632.21	
	Comm Facilities, 2,354 @ 5	0.67 = 1,577.18				
	WTP PCE, 2,354 @ \$0.401	4 = -944.90			0.0	
04/08/2015	PMT #20775. ck # 27133			-632.28	0.0	
04/30/2015	INV #E20239. Due 04/30/201			601.66	601.6	
	Comm Facilities, 2,240 @ S					
	WTP PCE, 2,240 @ \$0.401	4 = -899.14			0.0	
05/11/2015	PMT #20861. ck # 27226			-601.66	587.9	
05/31/2015	INV #E20376. Due 05/31/201			587.97	287.9	
	Comm Facilities, 2,189 @			1		
	WTP PCE, 2,189 @ \$0.401	4 = -878.66		607.07	0.0	
06/09/2015	PMT #20924. ck # 27351			-587.97	445.8	
06/30/2015	INV #E20485. Due 06/30/201			445.88	443.0	
	Comm Facilities, 1,660 @					
	WTP PCE, 1,660 @ \$0.401			116.62	892.5	
07/31/2015	INV #E20595. Due 07/31/201			446.63	094.0	
	Comm Facilities, 1,606 @					
	WTP PCE, 1,606 @ \$0.39	19 = -629.39		-446.63	445.8	
08/10/2015	PMT #21031. ck # 27564			-7,000.00	-6.554.1	
08/10/2015	CREDMEM #E20614.			-7,000.00	-0,004.1	
	Comm Facilities \$-7,000.00)		-445.88	-7.000.0	
08/11/2015	PMT #21032. ck # 27571			-115.00	.,	
QUERCHT	1-30 DAYS PAST	31-60 DAYS PAST	61-90 DAYS PAST	OVER 90 DAYS	Amount Due	
CURRENT	DUE	DUE	DUE	PAST DUE		
2 (20 77	0.00	0.00	0.00	0.00	-\$3,629.77	
-3,629.77	0.00	0.00	0.00	0.00	-25,027.11	

Kwig Power Company Kwigillingok, AK 99622

Statement

Date
8/16/2016

To: Kwig IRA Council RE: New Laundromat P.O.Box 90 Kwigillingok, Ak 99622

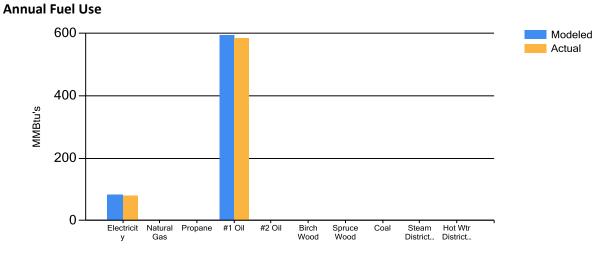
				Amount Due	Amount Enc.
				-\$3,629.77	
Date		Amount	Balance		
	INV #E20732. Due 08/31/201 Comm Facilities, 1,748 @ WTP PCE, 1,748 @ \$0.31	\$0.67 = 1,171.16		625.96	-6,374.04
09/30/2015	INV #E20851. Due 09/30/201 Comm Facilities, 1,780 @	5. \$0.67 = 1,192.60		637.42	-5,736.62
10/30/2015	WTP PCE, 1,780 @ \$0.31 INV #E21083. Due 10/30/201 Comm Facilities, 2,304 @	5. \$0.67 = 1,543.68		825.06	-4,911.56
11/30/2015	WTP PCE, 2,304 @ \$0.31 INV #E20969. Due 12/10/201 Comm Facilities, 2,304 @	5. \$0.67 = 1,543.68		825.06	-4,086.50
12/31/2015	WTP PCE, 2,304 @ \$0.31 INV #E21194. Due 12/31/201 Comm Facilities, 1,493 @	5.		534.64	-3,551.86
	WTP PCE, 1,493 @ \$0.31				
CURRENT	1-30 DAYS PAST DUE	31-60 DAYS PAST DUE	61-90 DAYS PAST DUE	OVER 90 DAYS PAST DUE	Amount Due
-3,629.77	0.00	0.00	0.00	0.00	-\$3,629.77

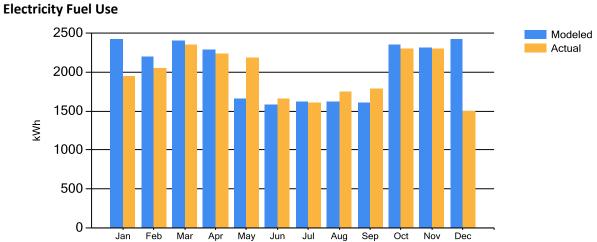
· · · · · ·	e e		÷		A		
LITP / Lawley	A	ccol	JNTS REC	EIVAB	LE LEDGE	A	
WTP / Laundry	A	ccou	NT NO				
S/O Coming		SHE	ET NO				
DATE INVOICE NUMBER / DESCRIPTION	CHARG	EC.	L. Caro	ine .	BALAN		5
BALANCE FOR	A CONTRACTOR OF CONTRACTOR	9 775 3353	-E.C. 10 27 10 27	54.71.648	1450.	10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	51
12.26.14 abien and	100.	00			1350.		
1.19.15 abin andrea	100.	00			1250	01	32
1.20.15 aprice ander	200	00	,		1050	01	
1.23.15 gl de	1 5.				1045	01	1
1.26.15 Jun 200	105	01	Y		940.	00	•
1.31.15 abien and	100.	1	114612 015		840		
2,12,15 aprice ander	-100.	ac	CONTRACTOR OF		740		
2/25/15 abria anden	100,	00		Sec.	640	00	
2.26. 15 adrie confir	100.	10.0			540	1222	
3.16.15 aprin ander	100	0		35.	446		
3.28, 15 abie ander	440.	0		1		Ø.	
5.13.15 Ad	1.1		1995 H	78		/- 1	
5.13.15 Ilm at	120	15		P.	3694	83	
5.18.15 abie ander	400,	1.000			3294	1.	
5.19.15 abai and	200				3094		
8-1-15 abai anden	200.		199		2894	83	
83.15 adie and	200.	0	100		2694	83	
8.12.15 Credit PATD			2150	53	4845	36.	
9.15.15 after anden	300	01	Trees	iner.	4545	35	
						and the second se	

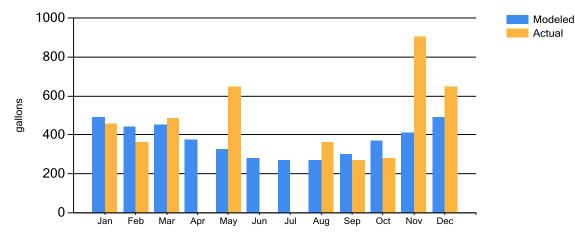
33

WTP / Laundry	A	CCOUN	NT NO		a. 194 - 14, 111 -	
510 Coming		SHEE	ET NO			
DATE INVOICE NUMBER / DESCRIPTION	CHARG	ES	ORED	ns	BALAN	CE
BALANCE FOR					4545	
10.16.15 John at	200.	00			4345	35
H. 4.15 Juny Phillip	430	89	a second	al de	3214	44
11.5.15 gim Abile	575.	00			3339.	46
1.6.15 Din Bulk	77ZO	00			2619	46
12745 Nijan	.10.	0			2602	46
1.4.14 Gr Chillip	460				2149.	33
1.5.10 Q. Ahalis	360.				1789.	10.002
2-16-14 & Palas	480	15			1309.	
1.25.16 Q. Ohly	224		and the second	1	1095.	34
4.26.14 Q Phills	360	1000	States -		725	100
1:28.16 0.000	482				243	
4.28.16 6-14/6	243			14	0	
		110000				
			1001			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 8		-
			as A			_
						_
						_

Appendix B – Energy Audit Report – Project Summary


ENERGY AUDIT REPORT – PROJ	ECT SUMMARY			
General Project Information				
PROJECT INFORMATION	AUDITOR INFORMATION			
Building: Kwigillingok Washeteria	Auditor Company: Alaska Native Tribal Health			
	Consortium			
Address: Kwigillingok	Auditor Name: Kevin Ulrich & Bailey Gamble			
City: Kwigillingok	Auditor Address: 4500 Diplomacy Drive, Suite 454			
Client Name: John Carter				
	Anchorage, AK 99508			
Client Address:	Auditor Phone: (907) 729-3237			
	Auditor FAX: (907) 729-3729			
Client Phone: (907) 588-2022	Auditor Comment:			
Client FAX:				
Design Data				
Building Area: 1,645 square feet	Design Space Heating Load: Design Loss at Space:			
	194,396 Btu/hour			
	with Distribution Losses: 204,628 Btu/hour			
	Plant Input Rating assuming 82.0% Plant Efficiency and			
	25% Safety Margin: 311,932 Btu/hour			
	Note: Additional Capacity should be added for DHW			
	and other plant loads, if served.			
Typical Occupancy: 4 people	Design Indoor Temperature: 70 deg F (building average)			
Actual City: Kwigillingok	Design Outdoor Temperature: -37.1 deg F			
Weather/Fuel City: Kwigillingok	Heating Degree Days: 12,990 deg F-days			
Utility Information				
Electric Utility: Kwig Power Company -	Natural Gas Provider: None			
Commercial - Lg				
Average Annual Cost/kWh: \$0.670/kWh	Average Annual Cost/ccf: \$0.000/ccf			


Annual Energy Cost Estimate												
Description	Space Heating	Water Heating	Ventilation Fans	Clothes Drying	Lighting	Other Electrical	Total Cost					
Existing Building	\$7,361	\$3 <i>,</i> 408	\$1,800	\$12,778	\$3,103	\$8,837	\$37,288					
With Proposed Retrofits	\$5,654	\$3,148	\$1,565	\$10,195	\$2,190	\$8,837	\$31,589					
Savings	\$1,707	\$260	\$235	\$2 <i>,</i> 583	\$913	\$0	\$5,698					


Building Benchmarks										
Description	EUI	EUI/HDD	ECI							
Description	(kBtu/Sq.Ft.)	(Btu/Sq.Ft./HDD)	(\$/Sq.Ft.)							
Existing Building	411.3	31.66	\$22.67							
With Proposed Retrofits	336.6	25.91	\$19.20							
EUI: Energy Use Intensity - The annual site energy consumption divided by the structure's conditioned area. EUI/HDD: Energy Use Intensity per Heating Degree Day.										
ECI: Energy Cost Index - The total annual cost of energy divided by the square footage of the conditioned space in the building.										

Appendix C - Actual Fuel Use versus Modeled Fuel Use

The graphs below show the modeled energy usage results of the energy audit process compared to the actual energy usage report data. The model was completed using AkWarm modeling software. The orange bars show actual fuel use, and the blue bars are AkWarm's prediction of fuel use.

#1 Fuel Oil Fuel Use

Appendix D - Electrical Demands

Estimated Peak Electrical Demand (kW)												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Current	9.9	9.9	9.8	9.8	9.0	9.0	8.9	8.9	9.0	9.8	9.8	9.9
As Proposed	9.3	9.3	9.2	9.2	8.4	8.4	8.4	8.4	8.4	9.2	9.2	9.3

AkWarmCalc Ver 2.5.3.0, Energy Lib 3/7/2016
