

Comprehensive Energy Audit For

Stevens Village Washeteria

Prepared For Native Village of Stevens

June 17, 2016

Prepared By:

ANTHC-DEHE 4500 Diplomacy Dr. Anchorage, AK 99508

Table of Contents

PREFACE	3
ACKNOWLEDGMENTS	3
1. EXECUTIVE SUMMARY	4
2. AUDIT AND ANALYSIS BACKGROUND	9
2.1 Program Description	9
2.2 Audit Description	9
2.3. Method of Analysis	10
2.4 Limitations of Study	12
3. Stevens Village Washeteria	12
3.1. Building Description	12
3.2 Predicted Energy Use	21
3.2.1 Energy Usage / Tariffs	21
3.2.2 Energy Use Index (EUI)	24
3.3 AkWarm© Building Simulation	25
4. ENERGY COST SAVING MEASURES	26
4.1 Summary of Results	26
4.2 Interactive Effects of Projects	30
Appendix A – Energy Audit Report – Project Summary	38
Appendix B – Actual Fuel Use versus Modeled Fuel Use	39
Appendix C - Electrical Demands	41

PREFACE

This energy audit was conducted using funds from the United States Department of Agriculture Rural Utilities Service as well as the State of Alaska Department of Environmental Conservation. Coordination with the State of Alaska Remote Maintenance Worker (RMW) Program and the associated RMW for each community has been undertaken to provide maximum accuracy in identifying audits and coordinating potential follow up retrofit activities.

The Rural Energy Initiative at the Alaska Native Tribal Health Consortium (ANTHC) prepared this document for The Native Village of Stevens, Alaska. The authors of this report is Kevin Ulrich, Energy Manager-in-Training (EMIT).

The purpose of this report is to provide a comprehensive document of the findings and analysis that resulted from an energy audit conducted in April of 2016 by the Energy Projects Group of ANTHC. This report analyzes historical energy use and identifies costs and savings of recommended energy conservation measures. Discussions of site-specific concerns, non-recommended measures, and an energy conservation action plan are also included in this report.

ACKNOWLEDGMENTS

The ANTHC Energy Projects Group gratefully acknowledges the assistance of Water Treatment Plant Operator Henry Smoke, Remote Maintenance Worker Lee Meckel, and Stevens Village Tribal Administrator Jessica Kozevnikoff.

1. EXECUTIVE SUMMARY

This report was prepared for the Native Village of Stevens. The scope of the audit focused on Stevens Village Washeteria. The scope of this report is a comprehensive energy study, which included an analysis of building shell, interior and exterior lighting systems, heating and ventilation systems, and plug loads.

In the near future, a representative of ANTHC will be contacting the Native Village of Stevens to follow up on the recommendations made in this report. Funding has been provided to ANTHC through a Rural Alaska Village Grant to provide the community with assistance in understanding the report and implementing the recommendations. ANTHC will work to complete the recommendations within the 2016 calendar year.

The total predicted energy cost for the Stevens Village Washeteria is \$59,737. Electricity represents the largest portion with an annual cost of approximately \$35,740. This included \$14,988 paid by the village and \$20,752 paid by the Power Cost Equalization program through the State of Alaska. Fuel oil represents the remaining portion with an annual cost of approximately \$23,995. There is a heat recovery system present from the power plant to the washeteria that is owned and operated by the Native Village of Stevens. The recovered heat is delivered with zero charge because it is providing a benefit to the same governing body.

The heat recovery system transports heat from the generator cooling loops at the power plant to the circulating glycol loop at the washeteria. The recovered heat in the circulating glycol line at the washeteria is then transferred through additional heat exchangers to the lift station, sewer force main, school, and the multipurpose building. All of these buildings are heated from the central heat source of the washeteria boilers and the heat recovery system.

The table below lists the total usage of electricity, #1 heating oil, and the recovered heat before and after the proposed retrofits.

Predicted Annual Fuel Use				
Fuel Use	Existing Building	With Proposed Retrofits		
Electricity	32,491 kWh	17,516 kWh		
#1 Oil	6,665 gallons	5,625 gallons		
Heat Recovery	159.54 million Btu	195.97 million Btu		

Table 1.1: Predicted Annual Fuel Usage for Each Fuel Type

Benchmark figures facilitate comparing energy use between different buildings. The table below lists several benchmarks for the audited building. More details can be found in section 3.2.2.

 Table 1.2: Building Benchmarks for the Stevens Village Washeteria

Building Benchmarks					
Description	EUI	EUI/HDD	ECI		
Description	(kBtu/Sq.Ft.)	(Btu/Sq.Ft./HDD)	(\$/Sq.Ft.)		
Existing Building	513.5	33.07	\$26.67		
With Proposed Retrofits	445.6	28.70	\$17.64		
EUI: Energy Use Intensity - The annual site e	nergy consumption divided	by the structure's conditioned are	:a.		
EUI/HDD: Energy Use Intensity per Heating Degree Day.					
ECI: Energy Cost Index - The total annual cost of energy divided by the square footage of the conditioned space in the					
building.					

Table 1.3 below summarizes the energy efficiency measures analyzed for the Stevens Village Washeteria. Listed are the estimates of the annual savings, installed costs, and two different financial measures of investment return.

	PRIORITY LIST – ENERGY EFFICIENCY MEASURES							
			Annual		Savings to	Simple		
		Improvement	Energy	Installed	Investment	Payback	CO ₂	
Rank	Feature	Description	Savings	Cost	Ratio, SIR ¹	(Years) ²	Savings	
1	Lighting: Main	Replace with	\$2,153	\$2,540	9.85	1.2	4,079.4	
	Process Room	new energy-						
		efficient LED						
		lighting and add						
		new Occupancy						
		Sensor						
2	Force Main Heat	Add controls to	\$1,401	\$2,000	8.87	1.4	5,921.4	
	Add	force main heat						
		add and lower						
		temperature set						
		point to 50 deg.						
		F. Shut off heat						
		tape and use						
		only for						
		emergency						
		purposes.						
3	Setback	Lower the	\$679	\$1,000	8.75	1.5	3,244.7	
	Thermostat:	temperature set						
	Mechanical and	point to 60						
	Process Rooms	degrees F.						
4	Lighting: Exterior	Replace with	\$804	\$1,500	6.30	1.9	1,755.1	
		new energy-						
		efficient LED						
		lighting.						
5	Lighting: Bathroom	Replace with	\$80	\$160	5.79	2.0	139.9	
	Hallway	new energy-						
		efficient LED						
		lighting						

Table 1.3: Summarized Priority List of All Energy Recommendations for the Stevens Village Washeteria

PRIORITY LIST – ENERGY EFFICIENCY MEASURES							
Rank	Feature	Improvement Description	Annual Energy Savings	Installed Cost	Savings to Investment Ratio, SIR ¹	Simple Payback (Years) ²	CO2 Savings
6	Lighting: Big	Replace with	\$24	\$50	5.68	2.0	47.0
	Bathroom	new energy-					
	Incandescent	efficient LED					
		lighting					
7	Lighting: 4 Small	Replace with	\$146	\$300	5.67	2.1	281.2
	Bathrooms/Showers	new energy-					
		efficient LED					
		lighting	¢ (01	¢0,000	4.00	2.0	0.052.0
8	Setback	Implement a	\$621	\$2,000	4.00	3.2	2,953.8
	Inermostat:	Heating					
	washeteria	Temperature					
		Sotback to 60.0					
		deg E for the					
		Washeteria					
		space					
9	Lighting: Boiler	Replace with	\$454	\$1,400	3.77	3.1	877.0
	Room	new energy-					
		efficient LED					
		lighting and add					
		new occupancy					
		sensor					
10	Lighting: Boiler	Replace with	\$25	\$80	3.62	3.2	48.0
	Room - Small	new energy-					
	Fixtures	efficient LED					
		lighting					
11	Lighting: Office	Replace with	\$25	\$80	3.60	3.2	47.8
		new energy-					
		efficient LED					
		lighting	* ~~~	* / * *			
12	Other Electrical:	Replace with	\$932	\$4,000	3.34	4.3	1,636.0
	Multipurpose	Grundfos VFD					
	"Freezer" Building	smart pumps					
13	Pumps	Poplaco with	¢303	\$1.380	251	٨٢	508 Z
15	Lighting: Washeteria Boom		\$ 303	ф1,300	2.54	4.5	520.0
	vvasneteria KUUIII	officient I ED					
		lighting and add					
		sensor					

PRIORITY LIST – ENERGY EFFICIENCY MEASURES							
			Annual		Savings to	Simple	
	F	Improvement	Energy	Installed	Investment	Payback	CO ₂
Rank	Feature	Description	Savings		Ratio, SIR ¹	(Years) ²	Savings
14	Other Load:	Install	\$1,220	\$6,000	1.89	4.9	/,559./
	Multipurpose	Programmable					
	Building Space Heat	Thermostats					
		and perform					
		minor					
		weatherization					
		on the					
		Multipurpose					
		facility to					
		reduce heating					
		demand.					
15	Other Electrical:	Replace with	\$428	\$4,000	1.53	9.3	750.0
	School/Lagoon Heat	Grundfos VFD					
	Circulation Pumps	smart pumps					
16	Raw Water Heat	Install hydronic	\$6,713	\$50,000	1.47	7.4	2,646.4
	Add	heat add system					
		and turn off					
		electric heater					
		in the pump					
		house. Shut off					
		raw water and					
		water intake					
		heat tapes and					
		use only for					
		emergency					
		purposes.					
17	Lighting: Big	Replace with	\$9	\$80	1.35	8.6	17.8
	Bathroom T8's	new energy-					
		efficient LED					
		lighting					

PRIORITY LIST – ENERGY EFFICIENCY MEASURES							
	Annual Savings to Simple						
Bank	Forture	Improvement	Energy	Installed		Payback	CO ₂
Rank 18	Feature Heating, Ventilation, and Domestic Hot Water	Description Downsize boilers, Add new guns and burners, install hi-lo controls, rewire the Tekmar for proper operation, Insulate exposed pipes, Repair leaky shower to prevent waste of water, convert shower heads to low flow units, replace mixing valves in the showers, Descention	<u>Savings</u> \$3,755	Cost \$52,000	Ratio, SIR ¹ 1.28	(Years) ² 13.8	Savings 21,388.7
		Replace glycol circulation pump with a VFD equivalent					
19	Lighting: Main Process Room - Small Fixtures	Replace with new energy- efficient LED lighting and add new occupancy sensor	\$91	\$1,160	0.92	12.7	177.2
20	Air Tightening	Weatherize doors and windows, insulate drain holes	\$300	\$3,000	0.90	10.0	1,444.7
21	Window: Process Room - Broken	Replace existing window with triple pane window.	\$48	\$1,265	0.62	26.4	229.3
22	Lighting: Plumbing Chase	Replace with new energy- efficient LED lighting	\$5	\$200	0.27	42.7	9.1
23	Lighting: Water Storage Tank Alcove	Replace with new energy- efficient LED lighting	\$0	\$80	0.06	179.6	0.8
24	Dryers	Clean dryer vents regularly	\$0	\$100	0.03	999.9	17.7
	TOTAL, all measures		\$20,218	\$134,375	1.91	6.6	55,801.3

Table Notes:

¹ Savings to Investment Ratio (SIR) is a life-cycle cost measure calculated by dividing the total savings over the life of a project (expressed in today's dollars) by its investment costs. The SIR is an indication of the profitability of a measure; the higher the SIR, the more profitable the project. An SIR greater than 1.0 indicates a cost-effective project (i.e. more savings than cost). Remember that this profitability is based on the position of that Energy Efficiency Measure (EEM) in the overall list and assumes that the measures above it are implemented first.

² Simple Payback (SP) is a measure of the length of time required for the savings from an EEM to payback the investment cost, not counting interest on the investment and any future changes in energy prices. It is calculated by dividing the investment cost by the expected first-year savings of the EEM.

With all of these energy efficiency measures in place, the annual utility cost can be reduced by \$20,218 per year, or 33.8% of the buildings' total energy costs. These measures are estimated to cost \$134,375, for an overall simple payback period of 6.6 years. If only the cost-effective measures are implemented, the annual utility cost can be reduced by \$19,774 per year, or 33.1% of the buildings' total energy costs. These measures are estimated to cost \$128,570, for an overall simple payback period of 6.5 years.

Table 1.2 below is a breakdown of the annual energy cost across various energy end use types, such as Space Heating and Water Heating. The first row in the table shows the breakdown for the building as it is now. The second row shows the expected breakdown of energy cost for the building assuming all of the retrofits in this report are implemented. Finally, the last row shows the annual energy savings that will be achieved from the retrofits.

Annual Energy Cost Estimate								
Description	Space Heating	Water Heating	Clothes Drying	Lighting	Other Electrical	Raw Water Heat Add	Tank Heat	Total Cost
Existing Building	\$19,530	\$5,375	\$513	\$6,461	\$14,289	\$10,919	\$2,649	\$59,737
With Proposed	\$14,903	\$3,601	\$438	\$1,966	\$12,710	\$3,814	\$2,087	\$39,519
Retrofits								
Savings	\$4,627	\$1,774	\$75	\$4,495	\$1,579	\$7,106	\$563	\$20,218

2. AUDIT AND ANALYSIS BACKGROUND

2.1 Program Description

This audit included services to identify, develop, and evaluate energy efficiency measures at the Stevens Village Washeteria. The scope of this project included evaluating building shell, lighting and other electrical systems, and heating and ventilation equipment, motors and pumps. Measures were analyzed based on life-cycle-cost techniques, which include the initial cost of the equipment, life of the equipment, annual energy cost, annual maintenance cost, and a discount rate of 3.0%/year in excess of general inflation.

2.2 Audit Description

Preliminary audit information was gathered in preparation for the site survey. The site survey provides critical information in deciphering where energy is used and what opportunities exist within a building. The entire site was surveyed to inventory the following to gain an understanding of how each building operates:

- Building envelope (roof, windows, etc.)
- Heating and ventilation equipment
- Lighting systems and controls
- Building-specific equipment
- Water consumption, treatment (optional) & disposal

The building site visit was performed to survey all major building components and systems. The site visit included detailed inspection of energy consuming components. Summary of building occupancy schedules, operating and maintenance practices, and energy management programs provided by the building manager were collected along with the system and components to determine a more accurate impact on energy consumption.

Details collected from Stevens Village Washeteria enable a model of the building's energy usage to be developed, highlighting the building's total energy consumption, energy consumption by specific building component, and equivalent energy cost. The analysis involves distinguishing the different fuels used on site, and analyzing their consumption in different activity areas of the building.

The Stevens Village Washeteria is made up of the following activity areas:

- 1) Washeteria: 1,096 square feet
- 2) Mechanical and Process Rooms: 1,000 square feet
- 3) Lift Station: 144 square feet

In addition, the methodology involves taking into account a wide range of factors specific to the building. These factors are used in the construction of the model of energy used. The factors include:

- Occupancy hours
- Local climate conditions
- Prices paid for energy

2.3. Method of Analysis

Data collected was processed using AkWarm[©] Energy Use Software to estimate energy savings for each of the proposed energy efficiency measures (EEMs). The recommendations focus on the building envelope; heating and ventilation systems; lighting, plug load, and other electrical improvements; and motor and pump systems that will reduce annual energy consumption.

EEMs are evaluated based on building use and processes, local climate conditions, building construction type, function, operational schedule, existing conditions, and foreseen future plans. Energy savings are calculated based on industry standard methods and engineering estimations.

Our analysis provides a number of tools for assessing the cost effectiveness of various improvement options. These tools utilize **Life-Cycle Costing**, which is defined in this context as a method of cost analysis that estimates the total cost of a project over the period of time that includes both the construction cost and ongoing maintenance and operating costs.

Savings to Investment Ratio (SIR) = Savings divided by Investment

Savings includes the total discounted dollar savings considered over the life of the improvement. When these savings are added up, changes in future fuel prices as projected by the Department of Energy are included. Future savings are discounted to the present to account for the time-value of money (i.e. money's ability to earn interest over time). The **Investment** in the SIR calculation includes the labor and materials required to install the measure. An SIR value of at least 1.0 indicates that the project is cost-effective—total savings exceed the investment costs.

Simple payback is a cost analysis method whereby the investment cost of a project is divided by the first year's savings of the project to give the number of years required to recover the cost of the investment. This may be compared to the expected time before replacement of the system or component will be required. For example, if a boiler costs \$12,000 and results in a savings of \$1,000 in the first year, the payback time is 12 years. If the boiler has an expected life to replacement of 10 years, it would not be financially viable to make the investment since the payback period of 12 years is greater than the project life.

The Simple Payback calculation does not consider likely increases in future annual savings due to energy price increases. As an offsetting simplification, simple payback does not consider the need to earn interest on the investment (i.e. it does not consider the time-value of money). Because of these simplifications, the SIR figure is considered to be a better financial investment indicator than the Simple Payback measure.

Measures are implemented in order of cost-effectiveness. The program first calculates individual SIRs, and ranks all measures by SIR, higher SIRs at the top of the list. An individual measure must have an individual SIR>=1 to make the cut. Next the building is modified and resimulated with the highest ranked measure included. Now all remaining measures are reevaluated and ranked, and the next most cost-effective measure is implemented. AkWarm goes through this iterative process until all appropriate measures have been evaluated and installed.

It is important to note that the savings for each recommendation is calculated based on implementing the most cost effective measure first, and then cycling through the list to find the next most cost effective measure. Implementation of more than one EEM often affects the savings of other EEMs. The savings may in some cases be relatively higher if an individual EEM is implemented in lieu of multiple recommended EEMs. For example implementing a reduced operating schedule for inefficient lighting will result in relatively high savings. Implementing a reduced operating schedule for newly installed efficient lighting will result in lower relative savings, because the efficient lighting system uses less energy during each hour of operation. If multiple EEM's are recommended to be implemented, AkWarm calculates the combined savings appropriately.

Cost savings are calculated based on estimated initial costs for each measure. Installation costs include labor and equipment to estimate the full up-front investment required to implement a change. Costs are derived from Means Cost Data, industry publications, and local contractors and equipment suppliers.

2.4 Limitations of Study

All results are dependent on the quality of input data provided, and can only act as an approximation. In some instances, several methods may achieve the identified savings. This report is not intended as a final design document. The design professional or other persons following the recommendations shall accept responsibility and liability for the results.

3. Stevens Village Washeteria

3.1. Building Description

The 2,240 square foot Stevens Village Washeteria was constructed in 1995, with a normal occupancy of one person for approximately 5 hours per day throughout the week.

The Stevens Village Washeteria serves as the water intake and treatment facility as well as the central location for laundromat and shower services. The washeteria has a watering point with a $\frac{1}{2}$ " pipe that provides treated water for collection by the residents of the community. There are 3 washers and 4 dryers in the washeteria, which is always open for use with no active attendant.

Water is pumped from a well approximately 160 ft. from the water treatment plant. The water source is groundwater under the influence of surface water from the Yukon River. After being pumped into the plant, the water enters a 7000 raw water storage tank before going through a sand filter and bag filter. Chlorine is injected both before the raw water settlement tank and after the filters. Once the water has been filtered, some water is diverted for domestic hot water use including washers, showers, and sinks. The remaining water is stored in nine 500-gallon water storage tanks inside the building and a larger 17,000 gallon water storage tank outside of the main facility.

Description of Building Shell

The exterior walls of the water treatment plant are constructed with single stud 2x4 lumber construction with a 16-inch offset. The walls have approximately 3.5 inches of polyurethane foam insulation that is slightly damaged from age. There is approximately 2,040 square feet of wall space in the washeteria building. The lift station walls are single stud, 2x6 lumber construction with a 16-inch offset and 5.5 inches of polyurethane foam insulation. The insulation is slightly damaged and there is approximately 480 square feet of wall space for the lift station.

The washeteria has a cathedral ceiling with 2x6 lumber construction. The roof has standard framing and a 16-inch offset. There is approximately 5.5 inches of polyurethane foam

insulation with some damage due to age. There is approximately 2,197 square feet of roof space in the building. The lift station has the same construction in the roof as the washeteria building and has a total of approximately 151 square feet of roof space.

The washeteria is built on pilings with the floor framed from standard lumber. The floor is insulated with 5.5 inches of slightly damaged polyurethane foam insulation and there is approximately 2,096 square feet of floor space in the building. The lift station is built on grade on an elevated gravel pad foundation and has approximately 144 square feet of floor space.

The building has five total windows, each of which has double-pane glass and measurements of $34.5'' \times 34.5''$. There are three windows in the washeteria space and two windows in the process room space. The process room windows are south-facing. Additionally, there is a broken window with a plywood cover in the process room that is the same size.

There are insulated metal doors in the washeteria space and the process room space within the building. Each of these doors has some air leakage and visible daylight around the edges. Additionally, due to foundation shifting, both doors are difficult to open fully. The boiler room has a set of wooden double doors that were used to transport the water treatment plant equipment into the building during construction. These doors are no longer use. The lift station has two single insulated metal doors. All doors are 3' x 6'8" except for the process room door, which is $3'6'' \times 6'8''$.

Description of Heating Plants

The Heating Plants used in the building are:

Boiler 1

Nameplate Information:	Weil McLain 676
Fuel Type:	#1 Oil
Input Rating:	408,000 BTU/hr
Steady State Efficiency:	70 %
Idle Loss:	1.5 %
Heat Distribution Type:	Glycol
Boiler Operation:	All Year
Notes:	3.5 GPH oil fire rate
3358.6 hours	

Boiler 2

Nameplate Information:	Weil McLain 676
Fuel Type:	#1 Oil
Input Rating:	408,000 BTU/hr
Steady State Efficiency:	68 %
Idle Loss:	0 %
Heat Distribution Type:	Glycol
Boiler Operation:	All Year
Notes:	3.5 GPH oil fire rate

1611.1 hours

Boiler 3

Nameplate Information:	Weil McLain 776
Fuel Type:	#1 Oil
Input Rating:	480,000 BTU/hr
Steady State Efficiency:	70 %
Idle Loss:	1.5 %
Heat Distribution Type:	Glycol
Boiler Operation:	All Year
Notes:	4.25 GPH oil fire rate
659.3 hours	

The boilers operate to cover the majority of the heating loads for the washeteria. Two boilers are rated at 408 MBH while Boiler 3 is rated at 480 MBH. At the time of the site visit, Boiler 2 was not in operation.

Figure 1: Existing Fuel Oil Boilers

Heat Recovery

Fuel Type: Input Rating: Steady State Efficiency: Idle Loss: Heat Distribution Type: Boiler Operation: Heat Recovery 20,000 BTU/hr 95 % 0 % Glycol All Year

The heat recovery system transfers heat from the generator cooling loops in the power plant to the circulating glycol line in the water treatment plant. The generator loads for the power plant

range from around 15-20 kW in the summer to approximately 25 kW in the winter. These are very small loads for the current generators in place.

Figure 2: Heat Recovery Heat Exchanger on the Power Plant Side of the System

Solar Thermal System

Fuel Type: Input Rating: Steady State Efficiency: Idle Loss: Heat Distribution Type: Boiler Operation: Solar Thermal heating 15,000 BTU/hr 75 % 1.5 % Water All Year

There is a Heliodyne solar thermal hot water heater that is mounted on the existing hot water heater tank. The solar thermal system provides heat for domestic hot water purposes when available during the summer months and shoulder seasons.

Figure 3: Solar Thermal Water Heater

Toyotomi Oil Miser 148

Fuel Type:	#1 Oil
Input Rating:	148,000 BTU/hr
Steady State Efficiency:	85 %
Idle Loss:	1.5 %
Heat Distribution Type:	Glycol
Boiler Operation:	All Year

There is a Toyotomi Oil Miser 148 that is used specifically for domestic hot water heating. This operates when the solar thermal system is unable to handle the demand, especially in the winter months.

Figure 4: Toyotomi Oil Miser 148 Used for Making Hot Water

Space Heating Distribution Systems

There are 3 unit heaters in the washeteria building and one unit heater in the lift station tthat provide space heat to the facilities. The heaters are listed below with information on heat output, operational status, and location.

Unit Heater 1: 20 MBH rating, Process Room Unit Heater 2: 20 MBH rating, Process Room Unit Heater 3: 20 MBH rating, Process Room Lift Station Unit Heater: 5 MBH, Lift Station

There are also two unit heaters in the Multipurpose "Freezer" Building next to the washeteria. The heating system in the washeteria provides heat for Multipurpose Building, but any electrical loads required are on a separate meter.

Domestic Hot Water System

There is an indirect-fired hot water heater present in the building as well as a Toyotomi Oil Miser 148 direct-fired hot water heater and a Heliodyne solar thermal hot water heater.

Standard operations for the hot water heating include solar thermal heating during the summer months and heating from the Toyotomi unit when the solar thermal is unable to cover the load.

Heat Recovery Information

There is a heat recovery system that transfers heat from the generator cooling loop in the power plant to the circulating glycol loop at the washeteria prior to the boilers. The generators at power plant are underloaded because of the closure of the school, and as a result the current electrical load for the community is less than half of the generator capacity. The generator loads for the power plant range from around 15-20 kW in the summer to approximately 25 kW in the winter.

Lighting

The washeteria space has 11 fixtures with three T8 4ft. fluorescent light bulbs in each fixture. The lights are on approximately four hours per day during the winter and shoulder seasons and are rarely used in the summer. They consume approximately 894 kWh annually.

The hallway to the showers has two fixtures with three T8 4ft. fluorescent light bulbs in each fixture. The lights are on approximately four hours per day during the winter and shoulder seasons and are rarely used in the summer. They consume approximately 163 kWh annually.

The small bathrooms have a combined six incandescent 60W light bulbs that are used periodically throughout the day and are estimated to consume approximately 197 kWh annually.

The big bathroom has one fixture with two T8 4ft. light bulbs as well as one fixture a single 60W incandescent light bulb. These lights are on periodically throughout the day and consume approximately 32 kWh annually.

The office room has one fixture with two T8 4ft. fluorescent light bulbs. The lights are on approximately four hours per day whenever the operator is working and consume approximately 84 Watts annually.

The water storage tank alcove has a single fixture with two T8 4 ft. fluorescent light bulbs. The lights are rarely used with an estimated consumption of 2 kWh annually.

The main process room has 13 fixtures with four T8 4ft. fluorescent light bulbs in each fixture. At the time of the site visit, the switch plate was broken and the lights were being left on constantly. This is a recent development and will be addressed in the recommendations, but it is not reflected in the energy usage numbers for this report. During standard operating hours, the lights are on approximately four hours per day when the operator is working and consume approximately 2,674 kWh annually. The main process room also has two fixtures with two T8 4ft. fluorescent light bulbs in each fixture. The lights are not on the circuit with the broken switch but share the same standard operating hours and consume approximately 168 kWh annually. The boiler room has five fixtures with four T8 4ft. fluorescent light bulbs in each fixture as well as a single fixture with two T8 4ft. fluorescent light bulbs in each fixture. The lights are on approximately 2-3 hours per day and consume approximately 636 kWh annually.

There are three exterior lights on the washeteria building that operate during the dark hours throughout the winter and shoulder season months. The lights include a 60W incandescent light bulbs, a metal halide 40W light bulb, and a CFL 48 W light bulb. The lights combine to consume approximately 986 kWh annually.

There are four fixtures with 60W incandescent light bulbs in the plumbing chase that are rarely used and consume approximately 6 kWh annually.

Plug Loads

The washeteria has a variety of power tools, a telephone, and some other miscellaneous loads that require a plug into an electrical outlet. The use of these items is infrequent and consumes a small portion of the total energy demand of the building.

Major Equipment

There are two chlorine injection pumps that are used to inject chlorine at two different phases of the treatment process. The pumps are each rated for 168 Watts. Each pump operates when water is being made for approximately one hour per day and they consume approximately 123 kWh annually.

There are two raw water tank pumps that are used to pump water from the raw water settlement tank to the filtration process. Each of these pumps is rated for approximately 2 HP. One of the pumps operates whenever water is being made for approximately one hour per day. They consume approximately 545 kWh annually.

There is a backwash pump that is rated for 5 HP and is used to clean the filters approximately once per month. It consumes approximately 46 kWh annually.

There are two pressure pumps that are used to maintain an operable pressure in the system. Each of the pressure pumps is rated for 2 HP. They operate approximately 5% of the time all year long and consume approximately 580 kWh annually.

There are two pumps associated with the solar thermal heater that are used to circulate water through the solar panels and to transport the heated water through a heat exchanger in the hot water tank. Both pumps operate constantly and combine to consume approximately 2,279 kWh annually.

There are two pumps that are used to pump heated glycol to the Multipurpose Building to heat the facility. Each of the pumps are rated for 130 Watts. One of these pumps operate constantly during the winter heating months and consume approximately 2,980 kWh annually.

There is a heat add pump for the water storage tank that pumps heated glycol through the heat exchanger to heat the water and is rated for 84 Watts. The pump operates during the winter heating months and consumes approximately 115 kWh annually.

There are two pumps that circulate heated glycol to the lift station unit heaters. Each of these pumps are rated for 87 Watts. One of the pumps operates constantly and consume approximately 763 kWh annually. There are also two pumps on the water treatment plant side of this heat exchanger. These pumps are also rated for 87 Watts. One of these pumps runs constantly and consumes approximately 763 kWh annually.

There is a glycol feed pump that is rated for 29 Watts and consumes approximately 13 kWh annually.

There are two pumps that are used to circulate heated glycol to the school and force main heat add systems. Each of the pumps is rated for 1/3 HP. One of these pumps operates constantly during the winter heating months and consumes approximately 1,370 kWh annually.

There are three clothes washers in the washeteria that combine to operate for about four loads per day. Each washer is rated at 1,176 kWh. The washers consume approximately 1,727 kWh annually.

There are two motors associated with each of the four dryers in the washeteria. On each dryer, one motor is used for operating the drum and one motor is used to provide the heated air flow. All eight motors are rated for ¼ HP. They combine to consume approximately 274 kWh annually.

There is a dryer heat-add pump that operates whenever the dryers are in use for approximately two loads per day. The pump is rated for 1.5 HP and consumes approximately 192 kWh annually.

There is a well pump that is rated for 3 HP and is used approximately one hour per day to pump raw water in from the well source to the water treatment plant. The pump consumes approximately 822 kWh annually.

There is a lift station pump in the lift station that is not used much because it is only attached to the washeteria. The pump consumes approximately 411 kWh annually.

There is a building heat circulation pump that operates with the boilers that is used to circulate the heated glycol from the boilers and heat recovery system to the heating loads through the facilities. The pump is rated for 1.5 HP.

There is a circulation pump o the hot water generator that is used to pump heated water to the showers, sinks, and washers when needed. The pump is rated for 440 Watts.

There are three heat tapes that operate constantly during the winter heating months. One heat tape is used to heat the raw water intake line from the well to the pump house. This was measured to use approximately 187 Watts of power. One heat tape is used to heat the raw

water pipe between the pump house and the washeteria. This was measured to use approximately 124 Watts of power. The third heat tape is used to heat the force main line from the washeteria to the sewage lagoon and was measured to use approximately 123 Watts. Finally, there is an electric heater in the pump house that is used constantly during the winter heating months. This unit is rated for 1500 Watts.

3.2 Predicted Energy Use

3.2.1 Energy Usage / Tariffs

The electric usage profile charts (below) represents the predicted electrical usage for the building. If actual electricity usage records were available, the model used to predict usage was calibrated to approximately match actual usage. The electric utility measures consumption in kilowatt-hours (kWh) and maximum demand in kilowatts (kW). One kWh usage is equivalent to 1,000 watts running for one hour. One KW of electric demand is equivalent to 1,000 watts running at a particular moment. The basic usage charges are shown as generation service and delivery charges along with several non-utility generation charges.

The fuel oil usage profile shows the fuel oil usage for the building. Fuel oil consumption is measured in gallons. One gallon of #1 Fuel Oil provides approximately 132,000 BTUs of energy.

The Native Village of Stevens owns and operates the electric utility and power plant for the community. The utility provides electricity to the residents of Stevens Village as well as all commercial and public facilities.

The average cost for each type of fuel used in this building is shown below in Table 3.1. This figure includes all surcharges, subsidies, and utility customer charges:

Average Energy Cost							
Description Average Energy Cost							
Electricity	\$ 1.10/kWh						
#1 Oil	\$ 3.60/gallons						
Heat Recovery	\$ 0.01/million Btu						

Table 3.1: Energy Rates for Each Fuel Source in Stevens Village

3.2.1.1 Total Energy Use and Cost Breakdown

At current rates, Native Village of Stevens pays approximately \$59,737 annually for electricity and other fuel costs for the Stevens Village Washeteria.

Figure 5 below reflects the estimated distribution of costs across the primary end uses of energy based on the AkWarm[©] computer simulation. Comparing the "Retrofit" bar in the figure to the "Existing" bar shows the potential savings from implementing all of the energy efficiency measures shown in this report.

Annual Energy Costs by End Use

Figure 5: Annual Energy Costs by End Use

Figure 6 below shows how the annual energy cost of the building splits between the different fuels used by the building. The "Existing" bar shows the breakdown for the building as it is now; the "Retrofit" bar shows the predicted costs if all of the energy efficiency measures in this report are implemented.

Figure 6: Annual Energy Costs by Fuel Type

Figure 3.3 below addresses only Space Heating costs. The figure shows how each heat loss component contributes to those costs; for example, the figure shows how much annual space heating cost is caused by the heat loss through the Walls/Doors. For each component, the space heating cost for the Existing building is shown (blue bar) and the space heating cost assuming all retrofits are implemented (yellow bar) are shown.

Annual Space Heating Cost by Component

Figure 7: Annual Space Heating Cost by Component

The tables below show AkWarm's estimate of the monthly fuel use for each of the fuels used in the building. For each fuel, the fuel use is broken down across the energy end uses. Note, in the tables below "DHW" refers to Domestic Hot Water heating.

Electrical Consumption (kWh)												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Space Heating	501	387	318	145	61	12	8	26	74	202	353	480
DHW	129	117	129	124	34	33	34	34	81	128	125	129
Lighting	613	559	613	594	325	315	325	325	384	613	594	613
Other Electrical	1330	1212	1330	1287	724	700	724	724	1013	1330	1287	1330
Raw Water Heat Add	1347	1228	1347	1304	0	0	0	0	695	1347	1304	1347
Tank Heat	9	7	5	2	0	0	0	0	0	3	6	8

Table 3.2: Electrical Consumption Records by Category

Table 3.3: Fuel Oil Consumption Records by Category

Fuel Oil #1 Consumption (Gallons)												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Space Heating	886	708	624	354	9	0	0	0	107	436	663	854
DHW	101	89	94	88	99	99	102	102	100	91	92	100
Clothes Drying	6	6	6	7	21	21	22	22	12	7	6	6
Tank Heat	154	120	99	40	0	0	0	0	0	56	108	147

Table 3.4: Recovered Heat Consumption Records by Category

Recovered Heat Consumption (Million Btu)												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Space Heating	22	18	16	9	1	0	0	0	3	11	16	21
DHW	3	2	3	2	2	1	2	2	2	2	3	3
Tank Heat	4	3	2	1	0	0	0	0	0	1	2	3

3.2.2 Energy Use Index (EUI)

Energy Use Index (EUI) is a measure of a building's annual energy utilization per square foot of building. This calculation is completed by converting all utility usage consumed by a building for one year, to British Thermal Units (Btu) or kBtu, and dividing this number by the building square footage. EUI is a good measure of a building's energy use and is utilized regularly for comparison of energy performance for similar building types. The Oak Ridge National Laboratory (ORNL) Buildings Technology Center under a contract with the U.S. Department of Energy maintains a Benchmarking Building Energy Performance Program. The ORNL website determines how a building's energy use compares with similar facilities throughout the U.S. and in a specific region or state.

Source use differs from site usage when comparing a building's energy consumption with the national average. Site energy use is the energy consumed by the building at the building site only. Source energy use includes the site energy use as well as all of the losses to create and distribute the energy to the building. Source energy represents the total amount of raw fuel that is required to operate the building. It incorporates all transmission, delivery, and production losses, which allows for a complete assessment of energy efficiency in a building. The type of utility purchased has a substantial impact on the source energy use of a building. The EPA has determined that source energy is the most comparable unit for evaluation purposes and overall global impact. Both the site and source EUI ratings for the building are provided to understand and compare the differences in energy use.

The site and source EUIs for this building are calculated as follows. (See Table 3.4 for details):

Building Site EUI = <u>(Electric Usage in kBtu + Fuel Oil Usage in kBtu)</u> Building Square Footage

Building Source EUI = (Electric Usage in kBtu X SS Ratio + Fuel Oil Usage in kBtu) Building Square Footage where "SS Ratio" is the Source Energy to Site Energy ratio for the particular fuel.

		Site Energy Use per	Source/Site	Source Energy Use				
Energy Type	Building Fuel Use per Year	Year, kBTU	Ratio	per Year, kBTU				
Electricity	32,491 kWh	110,892	3.340	370,380				
#1 Oil	6,665 gallons	879,813	1.010	888,611				
Hot Wtr District Ht	159.54 million Btu	159,544	1.280	204,217				
Total		1,150,250		1,463,208				
BUILDING AREA		2,240	Square Feet					
BUILDING SITE EUI	514 kBTU/Ft²/Yr							
BUILDING SOURCE EU	I	653	kBTU/Ft ² /Yr					
* Site - Source Ratio da	ata is provided by the Energy S	tar Performance Rating	g Methodology f	or Incorporating				

Source Energy Use document issued March 2011.

Table 3.6: Stevens Village Washeteria Building Benchmarks

Building Benchmarks										
Description	EUI	EUI/HDD	ECI							
Description	(kBtu/Sq.Ft.)	(Btu/Sq.Ft./HDD)	(\$/Sq.Ft.)							
Existing Building	513.5	33.07	\$26.67							
With Proposed Retrofits	445.6	28.70	\$17.64							
EUI: Energy Use Intensity - The annual site	energy consumption divide	d by the structure's conditioned a	irea.							
EUI/HDD: Energy Use Intensity per Heating	Degree Day.									
ECI: Energy Cost Index - The total annual cost of energy divided by the square footage of the conditioned space in the										
building.										

3.3 AkWarm© Building Simulation

An accurate model of the building performance can be created by simulating the thermal performance of the walls, roof, windows and floors of the building. The heating and ventilation systems and central plant are modeled as well, accounting for the outside air ventilation required by the building and the heat recovery equipment in place.

The model uses local weather data and is trued up to historical energy use to ensure its accuracy. The model can be used now and in the future to measure the utility bill impact of all types of energy projects, including improving building insulation, modifying glazing, changing air handler schedules, increasing heat recovery, installing high efficiency boilers, using variable air volume air handlers, adjusting outside air ventilation and adding cogeneration systems.

For the purposes of this study, the Stevens Village Washeteria was modeled using AkWarm© energy use software to establish a baseline space heating energy usage. Climate data from Stevens Village was used for analysis. From this, the model was be calibrated to predict the impact of theoretical energy savings measures. Once annual energy savings from a particular measure were predicted and the initial capital cost was estimated, payback scenarios were approximated.

Limitations of AkWarm© Models

• The model is based on typical mean year weather data for Stevens Village. This data represents the average ambient weather profile as observed over approximately 30 years. As such, the gas and electric profiles generated will not likely compare perfectly with actual energy

billing information from any single year. This is especially true for years with extreme warm or cold periods, or even years with unexpectedly moderate weather.

• The heating load model is a simple two-zone model consisting of the building's core interior spaces and the building's perimeter spaces. This simplified approach loses accuracy for buildings that have large variations in heating loads across different parts of the building.

The energy balances shown in Section 3.1 were derived from the output generated by the AkWarm[©] simulations.

4. ENERGY COST SAVING MEASURES

4.1 Summary of Results

The energy saving measures are summarized in Table 4.1. Please refer to the individual measure descriptions later in this report for more detail.

	PRIORITY LIST – ENERGY EFFICIENCY MEASURES											
Pank	Feature	Improvement	Annual Energy Savinas	Installed	Savings to Investment	Simple Payback	CO ₂					
1	Lighting: Main	Benlace with	\$2 1.53	\$2.540	9 85	12	4 079 4					
	Drococs Poom		ψ2,100	ψ2,040	7.00	1.2	7,077.7					
		efficient LED										
		lighting and add										
		Sensor										
2	Earca Main Heat	Add controls to	\$1.401	\$2,000	8.87	1.4	5 921 1					
2		force main heat	ψι,-υι	ψ2,000	0.07	1.4	0,721.4					
	Auu	add and lower										
		temperature set										
		noint to 50 deg										
		F Shut off heat										
		tane and use										
		only for										
		emergency										
		purposes.										
3	Setback	Lower the	\$679	\$1,000	8.75	1.5	3,244.7					
	Thermostat:	temperature set										
	Mechanical and	point to 60										
	Process Rooms	degrees F.										
4	Lighting: Exterior	Replace with	\$804	\$1,500	6.30	1.9	1,755.1					
		new energy-										
		efficient LED										
		lighting.										
5	Lighting: Bathroom	Replace with	\$80	\$160	5.79	2.0	139.9					
	Hallway	new energy-										
		efficient LED										
		lighting										

Table 4.1: List of Energy Efficiency Recommendations by Economic Priority

	PRIORI	TY LIST – ENER	GY EFFI		MEASURES	5	
Rank	Feature	Improvement Description	Annual Energy Savings	Installed Cost	Savings to Investment Ratio, SIR	Simple Payback (Years)	CO ₂ Savings
6	Lighting: Big	Replace with	\$24	\$50	5.68	2.0	47.0
	Bathroom	new energy-					
	Incandescent	efficient LED					
		lighting					
7	Lighting: 4 Small	Replace with	\$146	\$300	5.67	2.1	281.2
	Bathrooms/Showers	new energy-					
		efficient LED					
		lighting					
8	Setback	Implement a	\$621	\$2,000	4.00	3.2	2,953.8
	Thermostat:	Heating					
	Washeteria	Temperature					
		Unoccupied					
		Setback to 60.0					
		deg F for the					
		Washeteria					
0		space.	¢ A E A	¢1.400	2 77	2.1	977.0
9	Lighting: Boiler	Replace with	\$404	\$1,400	3.77	3.1	877.0
	ROOM	new energy-					
		lighting and add					
		sensor					
10	Lighting: Boiler	Benlace with	\$25	\$80	3.62	32	48.0
10	Room - Small		Ψ20	400	0.02	0.2	10.0
	Fixtures	efficient I FD					
	Tixtures	lighting					
11	Lighting: Office	Replace with	\$25	\$80	3.60	3.2	47.8
	Lighting. Office	new energy-	+	4.5.5			
		efficient LED					
		lighting					
12	Other Electrical:	Replace with	\$932	\$4,000	3.34	4.3	1,636.0
	Multipurpose	Grundfos VFD					
	"Freezer" Building	smart pumps					
	Pumps						
13	Lighting:	Replace with	\$303	\$1,380	2.54	4.5	528.6
	Washeteria Room	new energy-					
		efficient LED					
		lighting and					
		add new					
		occupancy					
		sensor					

	PRIORITY LIST – ENERGY EFFICIENCY MEASURES											
			Annual		Savings to	Simple						
		Improvement	Energy	Installed	Investment	Payback	CO ₂					
Rank	Feature	Description	Savings	Cost	Ratio, SIR	(Years)	Savings					
14	Other Load:	Install	\$1,220	\$6,000	1.89	4.9	7,559.7					
	Multipurpose	Programmable										
	Building Space Heat	Thermostats										
		and perform										
		minor										
		weatherization										
		on the										
		Multipurpose										
		facility to										
		reduce heating										
		demand.										
15	Other Electrical:	Replace with	\$428	\$4,000	1.53	9.3	750.0					
	School/Lagoon Heat	Grundfos VFD										
	Circulation Pumps	smart pumps										
16	Raw Water Heat	Install hydronic	\$6,713	\$50,000	1.47	7.4	2,646.4					
	Add	heat add										
		system and turn										
		off electric										
		heater in the										
		pump house.										
		Shut off raw										
		water and										
		water intake										
		heat tapes and										
		use only for										
		emergency										
		purposes.										
17	Lighting: Big	Replace with	\$9	\$80	1.35	8.6	17.8					
	Bathroom T8's	new energy-										
		efficient LED										
		lighting										

	PRIORITY LIST – ENERGY EFFICIENCY MEASURES											
			Annual		Savings to	Simple						
Pank	Feature	Improvement	Energy	Installed	Investment	Payback (Years)	CO ₂					
18	Heating	Downsize	\$3,755	\$52,000	1.28	13.8	21.388.7					
	Ventilation and	boilers, Add new	40,700	<i>q</i> 02,000		1010	21,0001/					
	Domostic Hot Wator	guns and										
	Domestic Hot Water	burners, install										
		hi-lo controls,										
		Tekmar for										
		proper										
		operation,										
		Insulate										
		exposed pipes,										
		shower to										
		prevent waste										
		of water,										
		convert shower										
		flow upits										
		replace mixina										
		valves in the										
		showers,										
		Replace glycol										
		circulation										
		VFD equivalent										
19	Lighting: Main	Replace with	\$91	\$1,160	0.92	12.7	177.2					
	Process Room -	new energy-										
	Small Fixtures	efficient LED										
		lighting and add										
		new occupancy										
		sensor										
20	Air Tightening	Weatherize	\$300	\$3,000	0.90	10.0	1,444.7					
		doors and										
		windows,										
		insulate drain										
		holes										
21	Window: Process	Replace existing	\$48	\$1,265	0.62	26.4	229.3					
	Room - Broken	window with										
		triple pane										
		window.										
22	Lighting: Plumbing	Replace with	\$5	\$200	0.27	42.7	9.1					
	Chase	new energy-										
		efficient LED										
		lighting										
23	Lighting: Water	Replace with	\$0	\$80	0.06	179.6	0.8					
	Storage Tank Alcove	new energy-										
		efficient LED										
		lighting										
24	Dryers	Clean dryer	\$0	\$100	0.03	999.9	17.7					
		vents regularly										
	TOTAL, all measures		\$20,218	\$134,375	1.91	6.6	55,801.3					

4.2 Interactive Effects of Projects

The savings for a particular measure are calculated assuming all recommended EEMs coming before that measure in the list are implemented. If some EEMs are not implemented, savings for the remaining EEMs will be affected. For example, if ceiling insulation is not added, then savings from a project to replace the heating system will be increased, because the heating system for the building supplies a larger load.

In general, all projects are evaluated sequentially so energy savings associated with one EEM would not also be attributed to another EEM. By modeling the recommended project sequentially, the analysis accounts for interactive affects among the EEMs and does not "double count" savings.

Interior lighting, plug loads, facility equipment, and occupants generate heat within the building. Lighting-efficiency improvements are anticipated to slightly increase heating requirements. Heating penalties benefits were included in the lighting project analysis.

4.3 Building Shell Measures

Rank	Location	9	Size/Type, Condition		Recommendation	n		
21	Window/Sky	ylight: 0	Glass: No glazing - broken, missing		Replace existing window with triple pane window.			
	Process Roo	m - Broken	Frame: Wood\Vinyl					
			Spacing Between Layers: Half Inch					
Gas Fill Type: Air								
	Modeled U-Value: 0.94							
		9	Solar Heat Gain Coefficient including W					
		(Coverings: 0.11					
Installat	Installation Cost \$1,		65 Estimated Life of Measure (yrs)		Energy Savings	(/yr)	\$48	
Breakeven Cost			0 Savings-to-Investment Ratio	Simple Payback	yrs	26		
Auditors	s Notes: This	window is brok	en and is covered with plywood. The s	pace measures	34.5" x 34.5".			

4.3.1 Window Measures

4.3.2 Air Sealing Measures

David		F .					
Rank	Location	E)	kisting Air Leakage Level (cfm@50/	75 Pa) F	ecommended Air Leakage Reduction (cfm@50/75 Pa)		
20		Ai	Air Tightness estimated as: 3250 cfm at 50 Pascals		Weatherize doors and windov	vs, insulate drain holes	
Installation Cost \$3			Estimated Life of Measure (yrs)	1	0 Energy Savings (/yr)	\$300	
Breakev	en Cost	\$2,688	Savings-to-Investment Ratio	9 Simple Payback yrs	10		
Breakeven Cost \$2,688 Savings-to-Investment Ratio 0.9 Simple Payback yrs Auditors Notes: There are exposed drain holes in the floor that can be insulated to prevent air infiltration. The washeteria entrance doors have air infiltration through the seams and can be sealed with weather stripping.							

4.4 Mechanical Equipment Measures

4.4.1 Heating/ Domestic Hot Water Measure

Rank	Recommendation								
18	Downsize be	oilers, Add new gu	ins and burners, install hi-lo contro	ls, rewire the Tel	mar for proper o	peration, Insula	te exposed pipes,		
	Repair leaky	shower to preve	nt waste of water, convert shower	heads to low flow	v units, replace m	ixing valves in t	he showers, Replace		
glycol circulation pump with a VFD equivalent									
Installat	Installation Cost\$52,000Estimated Life of Measure (yrs)20Energy Savings (/yr)\$3,755								
Breakev	ven Cost	\$66,471	Savings-to-Investment Ratio	1.3	Simple Payback	yrs	14		
Auditor	s Notes: The	existing boilers we	ere designed for a circulating water	r system of a pop	ulation four times	greater than is	currently in the		
commu	nity. Downsizi	ng the boilers will	give the washeteria a more appro	priate boiler for t	he current heatin	g demand. Inst	tall hi-lo controls and		
rewire t	he Tekmar so	that the boilers ca	an run more efficiently and the larg	er boiler can only	y run as a backup.				
There a	re some unins	ulated pipes in the	e boiler room that can be insulated	to prevent exces	ss heat loss. The p	pipe lengths to	be insulated are:		
237 incl	nes of ½ - inch	pipe							
95 inche	es of ¾ - inch p	oipe							
480 incl	nes of 1-inch p	ipe							
580 incl	nes of 1.5 – inc	ch pipe							
351 incl	nes of 2-inch p	ipe							
130 incł	nes of 3-inch p	ipe.							
One of t	the showers ha	as a leak that is wa	asting water and could cause dama	ige to the woode	n structure suppo	rting the unit.	Repair this for more		
efficient	t and safer ope	erations.							
Convert	the shower h	eads to low-flow ເ	units to save on water usage. Repla	ace the mixing va	Ives as some leak	s were found in	the existing ones.		
Poplaco	the glucol circ	ulation nump wit	h a Crundfor Magna VED aquivalor	t for more offici	ant anarations				

4.4.2 Night Setback Thermostat Measures

Rank	Building Spa	ice		Recommen	Recommendation			
3	Mechanical	and Process Roor	ns	Lower the t	Lower the temperature set point to 60 degrees F.			
Installation Cost \$1,000 Estimated Life of Measure (yrs)				15	Energy Savings (/yr)		\$679	
Breakev	ven Cost	\$8,751	Savings-to-Investment Ratio	8.8	Simple Payback yrs		1	
Auditors lowering	s Notes: The t g temperature	emperature in th set points is mor	is room can be lowered because th e efficient than installing a prograr	ne occupancy sch nmable thermost	edule is minimal throug at.	hout the ye	ear. Training on	

Rank	Building Spa	ice		Recommen	Recommendation			
8	Washeteria	Asheteria Implement a Heating Temperature Unoccupied Setback to 60.0 deg F for the Washeteria space.						
Installat	ion Cost	\$2,000	Estimated Life of Measure (yrs)	15	Energy Savings	(/yr)	\$621	
Breakev	ven Cost	\$7,996	Savings-to-Investment Ratio	4.0	Simple Payback	yrs	3	
Auditors	Auditors Notes: The temperature in this room can be lowered because the occupancy schedule is minimal throughout the year.							

4.5 Electrical & Appliance Measures

4.5.1 Lighting Measures

The goal of this section is to present any lighting energy conservation measures that may also be cost beneficial. It should be noted that replacing current bulbs with more energy-efficient

equivalents will have a small effect on the building heating loads. The building heating load will see a small increase, as the more energy efficient bulbs give off less heat.

4.5.1a Lighting Measures – Replace Existing Fixtures/Bulbs

Rank	Location		Existing Condition Red		ecommendation		
1	Main Process Room		13 FLUOR (4) T8 4' F32T8 32W Standard Instant		Replace with new energy-efficient LED lighting and		
			StdElectronic		add new occupancy sense	r	
Installation Cost \$2		\$2,54	0 Estimated Life of Measure (yrs)	15	Energy Savings (/yr)	\$2,153	
Breakev	ven Cost	\$25,01	3 Savings-to-Investment Ratio	9.8	3 Simple Payback yrs	1	
Auditors The roor occupan	s Notes: Repa m has 13 fixtu ncy can also be	air light switch in res with four lig e installed in this	n process room so that the main light ght bulbs to be replaced with two new s room.	ts can be easily t w bulbs in each f	turned off. fixture for a total of 26 light	oulbs to replace. An	

Rank	Location	E	kisting Condition	Rec	Recommendation		
4	Exterior	3 INCAN A Lamp, Std 60W			Replace with new energy-efficient LED lighting		
Installation Cost \$1		\$1,500	Estimated Life of Measure (yrs)		15	Energy Savings (/yr)	\$804
Breakev	ven Cost	\$9,449	Savings-to-Investment Ratio	6	5.3	Simple Payback yrs	2
Auditors	s Notes:						

Rank Location			Existing Condition Reco		ecommendation				
5	5 Bathroom Hallway			2 FLUOR (3) T8 4' F32T8 32W Standard Instant		Replace with new energy-efficient LED lighting			
			StdElectronic						
Installation Cost			160	Estimated Life of Measure (yrs)		15	Energy Savings (/yr)		\$80
Breakev	en Cost	\$9	926	Savings-to-Investment Ratio 5.8 Simple Payback yrs					2
Auditors Notes: The room has two bulbs to replace.			o fixt	tures with three light bulbs to be re	eplaced with	two	new light bulbs in each	fixture fo	r a total of four light

Rank	Location	E	Existing Condition Re		Rec	ecommendation		
6	6 Big Bathroom		INCAN A Lamp, Std 60W			Replace with new energy-efficient LED lighting		
	Incandescent							
Installat	Installation Cost		\$50 Estimated Life of Measure (yrs) 1		15	Energy Savings (/yr)		\$24
Breakev	ven Cost	\$284	284 Savings-to-Investment Ratio 5.7		.7	Simple Payback yrs		2
Auditors Notes: The room has a s		room has a single	e fixture with one light bulb to repla	ice.				

Rank	Location	E	Existing Condition R		ecommendation		
7	4 Small	6	6 INCAN A Lamp, Std 60W		Replace with new energy-efficient LED lighting		
	Bathrooms/	Showers					
Installation Cost		¢200	Estimated Life of Measure (urs)	15	Enorgy Solvings (/\ur)	¢1/	
Installat	lion Cost	3500	Estimated Life of Measure (yrs)	1.5	Ellergy Savings (/yi)	\$14	
Breakev	ven Cost	\$300 \$1,702	Savings-to-Investment Ratio	5.7	7 Simple Payback yrs	Ş14	

Rank	Rank Location		Existing Condition Re		ecommendation			
9	9 Boiler Room		5 FLUOR (4) T8 4' F32T8 32W Standard Instant		Replace with new energy-efficient LED lighting and			
			StdElectronic		add new occupancy sensor			
Installation Cost \$1		\$1,4	400	Estimated Life of Measure (yrs)		15	Energy Savings (/yr)	\$454
Breakev	ven Cost	\$5,2	280	80 Savings-to-Investment Ratio 3.8		Simple Payback yrs	3	
Auditors Notes: The room has fir replace. An occupancy can also b			e fixt insta	tures with four light bulbs to be rep alled in this room.	placed with ty	wo r	ew bulbs in each fixture for a tot	al of ten light bulbs to

Rank	Location	E	Existing Condition Rec		Rec	ecommendation		
10	Boiler Room	i - Small F	FLUOR (2) T8 4' F32T8 32W Standard Instant			Replace with new energy-efficient LED lighting		
	Fixtures	S	StdElectronic					
Installat	ion Cost	\$80	\$80 Estimated Life of Measure (yrs)		15	Energy Savings (/yr)	\$25	
Breakev	en Cost	\$289	\$289 Savings-to-Investment Ratio			Simple Payback yrs	3	
Auditors Notes: The room has a s			le fixture with two light bulbs to rep	lace.				

Rank	Location	Existing Condition Re			Rec	commendation		
11	Office	FLUOR (2) T8 4' F32T8 32W Standard Instant				Replace with new energy-efficient LED lighting		
		StdElectronic						
Installat	ion Cost	\$80	Estimated Life of Measure (yrs)	1	15	Energy Savings (/yr)	\$25	
Breakev	ven Cost	\$288	Savings-to-Investment Ratio	3	8.6	Simple Payback yrs	3	
Breakeven CostAuditors Notes:The room has ato replace.			e fixture with four light bulbs to be	replaced with t	two	o new bulbs in the fixture for a to	otal of two light bulbs	

Rank	Location	Ex	kisting Condition	R	ecommendation		
13	Washeteria	Room 11	11 FLUOR (3) T8 4' F32T8 32W Standard Instant		Replace with ne	Replace with new energy-efficient LED lighting and	
		St	JElectronic		add new occupa	add new occupancy sensor	
Installation Cost \$1,			Estimated Life of Measure (yrs)	1!	5 Energy Savings	(/yr)	\$303
Breakeven Cost \$3		\$3,505	Savings-to-Investment Ratio	2.	5 Simple Payback	yrs	5
Auditors Notes: The room has 11 fixtures with three light bulbs to be replaced with two new bulbs in each fixture for a total of 22 light bulbs to replace. An occupancy can also be installed in this room.							al of 22 light bulbs to:

Rank	Rank Location		Existing Condition R		Rec	ecommendation		
17	17 Big Bathroom T8's		FLUOR (2) T8 4' F32T8 32W Standard Instant			Replace with new energy-efficient LED lighting		
			StdElectronic					
Installation Cost		\$80	Estimated Life of Measure (yrs)	1	15	Energy Savings (/yr)	\$9	
Breakeven Cost \$		\$108	Savings-to-Investment Ratio	1.	.3	Simple Payback yrs	9	
Auditors bulbs to	s Notes: The replace.	room has two fix	xtures with four light bulbs to be rep	placed with two	o ne	ew light bulbs in each fixture fo	r a total of four light	

Rank Location		E	Existing Condition Real		Rec	ecommendation		
19	19 Main Process Room -		2 FLUOR (2) T8 4' F32T8 32W Standard Instant		Replace with new energy-efficient LED lighting and			
Small Fixtures		es S	StdElectronic		add new occupancy sensor			
Installation Cost \$1,		\$1,16	60 Estimated Life of Measure (yrs)	-	15	Energy Savings (/yr)	\$91	
Breakeven Cost \$1,		\$1,06	5 Savings-to-Investment Ratio	0).9	Simple Payback yrs	13	
Auditors Notes: The room has tw in this room.			fixtures with two light bulbs each for	a total of four	ligł	nt bulbs to replace. An occupanc	y can also be installed	

Rank	Location	Existing Condition			Recommendation			
22	Plumbing Ch	nase 4	INCAN A Lamp, Std 60W	0W Replace with new			ent LED lighting	
Installat	tion Cost	\$200	Estimated Life of Measure (yrs)	1	15	Energy Savings (/yr)	\$5	
Breakev	ven Cost	\$55	Savings-to-Investment Ratio	0.3).3	Simple Payback yrs	43	
Auditors Notes: The room has four fixtures with a single light bulb in each fixture for a total of four light bulbs to replace.								

Rank Location		Ex	Existing Condition Re		Recommendation		
23	Water Stora	age Tank FL	FLUOR (2) T8 4' F32T8 32W Standard Instant		Replace with new energy-efficient LED lighting		ent LED lighting
	Alcove	St	StdElectronic				
Installation Cost		\$80	Estimated Life of Measure (yrs)	15	Energy Savings	(/yr)	\$
Breakev	akeven Cost \$		Savings-to-Investment Ratio	0.1	Simple Payback	yrs	180
Auditors Notes: The room has a single fixture with two light bulbs to replace.							

4.5.2 Other Electrical Measures

Rank	Location		Description of Existing Efficiency Efficience Efficienc		ficiency Recommendation		
12	Multipurpose "Freezer"		Heating Circulation Pumps		Replace with VFI	Replace with VFD smart pumps.	
	Building Pumps						
Installation Cost \$4,		\$4,00	00 Estimated Life of Measure (yrs)	20	Energy Savings	(/yr)	\$932
Breakeven Cost \$13,3		\$13,34	8 Savings-to-Investment Ratio	3.3	Simple Payback	yrs	4
Auditors	Auditors Notes: The Multipurpose Building has a varied heating load that can best be accommodated with a VFD smart pump to eliminate excess						
electricit	ty usage.						

Rank	ank Location		Description of Existing Ef		Effi	Efficiency Recommendation		
15	15 School/Lagoon Heat		Heating Circulation Pumps			Replace with VFD smart pumps.		
	Circulation Pumps							
Installation Cost \$4,		\$4,0	00 Es	stimated Life of Measure (yrs)	12	20	Energy Savings (/yr)	\$428
Breakeven Cost \$6		\$6,1	28 Sa	avings-to-Investment Ratio	1	L.5	Simple Payback yrs	9
Auditors excess e	Auditors Notes: The school and force main have a varied heating load that can best be accommodated with a VFD smart pump to eliminate excess electricity usage.							

4.5.3 Other Measures

Rank	Location	.ocation Description of Existing Eff		Effi	fficiency Recommendation		
2	Force Main	Fo	Force Main Heat Add			Add Controls to Force Main heat add and lower temperature set point to 50 deg. F. Shut off heat tap and use only for emergency purposes.	
Installat	ion Cost	\$2,000	Estimated Life of Measure (yrs)	1	15	Energy Savings (/yr)	\$1,401
Breakev	ven Cost	\$17,736	Savings-to-Investment Ratio	8	3.9	Simple Payback yrs	1
Auditors Notes: The force main needs a new temperature controller that can allow the heating to increase and reduce the need for the heat tape.							

Rank	Location		Description of Existing Ef		Effic	fficiency Recommendation		
14	14 Multipurpose Building Multipurpose Building Space Heat				Install Programmable Thermost weatherization on the Multipur heating demand.	ats and perform minor pose facility to reduce		
Installat	Installation Cost \$6		Estimated Life of Measure (yrs)	1	10	Energy Savings (/yr)	\$1,220	
Breakev	eakeven Cost \$11,328 Savings-to-Investment Ratio			1.	.9	Simple Payback yrs	5	
Auditors Notes: The Multipurpose Building is heated by the washeteria heating system and directly affects the fuel consumption by the washeteria boilers. Adding energy efficiency improvements and weatherization can decrease the overall heating demand on the boilers.								

Rank	nk Location Description of Existing Ef		Effi	ficiency Recommendation			
16 Pump House		e R	Raw Water Line Heat Add Load			Install hydronic heat add system and turn off electric	
						heater in the pump house. Shu	t off heat tape and use
						only for emergency purposes.	
Installat	tion Cost	\$50,000	0 Estimated Life of Measure (yrs)	1	15	Energy Savings (/yr)	\$6,713
Breakev	ven Cost	\$73,502	2 Savings-to-Investment Ratio	1	1.5	Simple Payback yrs	7

Auditors Notes: There is currently no hydronic heat-add line between the pump house and the washeteria. Adding a hydronic line will eliminate the need for the electric heat tape, allowing the operator to use it only for emergency purposes. The heat add line can also eliminate the need for the electric heater in the pump house ,which has no controls and was driving the pump house temperature to much high temperatures than needed. Below is a picture of the electric heater and of the pump house end of the heat tape and raw water pipe.

Rank	Location	Description of Existing Effi			Effi	ciency Recommendation	
24	Dryers - (4 Total Units)				Clean dryer vents regularly		
Installat	ion Cost	\$100	Estimated Life of Measure (yrs)	1	15	Energy Savings (/yr)	\$
Breakev	ven Cost	\$3	Savings-to-Investment Ratio	0.	0.0	Simple Payback yrs	1000
Auditors Notes: The dryer vents should be cleaned regularly to allow for better heat transfer and more efficient operations of the dryer.							

5. ENERGY EFFICIENCY ACTION PLAN

Through inspection of the energy-using equipment on-site and discussions with site facilities personnel, this energy audit has identified several energy-saving measures. The measures will reduce the amount of fuel burned and electricity used at the site. The projects will not degrade the performance of the building and, in some cases, will improve it.

Several types of EEMs can be implemented immediately by building staff, and others will require various amounts of lead time for engineering and equipment acquisition. In some cases, there are logical advantages to implementing EEMs concurrently. For example, if the same electrical contractor is used to install both lighting equipment and motors, implementation of these measures should be scheduled to occur simultaneously.

In the near future, a representative of ANTHC will be contacting the Native Village of Stevens to follow up on the recommendations made in this report. Funding has been provided to ANTHC through a Rural Alaska Village Grant to provide the community with assistance in understanding the report and implementing the recommendations. ANTHC will work to complete the recommendations within the 2016 calendar year.

APPENDICES

Appendix A – Energy Audit Report – Project Summary

ENERGY AUDIT REPORT – PROJE	CT SUMMARY
General Project Information	
PROJECT INFORMATION	AUDITOR INFORMATION
Building: Stevens Village Washeteria	Auditor Company: ANTHC-DEHE
Address: PO Box 70416	Auditor Name: Kevin Ulrich and Lee Menkel
City: Stevens Village	Auditor Address: 4500 Diplomacy Dr.
Client Name: Henry Smoke	Anchorage, AK 99508
Client Address: PO Box 70416	Auditor Phone: (907) 729-3237
Stevens Village, AK 99774	Auditor FAX:
Client Phone: (907) 478-7228	Auditor Comment:
Client FAX:	
Design Data	
Building Area: 2,240 square feet	Design Space Heating Load: Design Loss at Space: 58,016 Btu/hour with Distribution Losses: 58,016 Btu/hour Plant Input Rating assuming 82.0% Plant Efficiency and 25% Safety Margin: 88,440 Btu/hour Note: Additional Capacity should be added for DHW and other plant loads, if served.
Typical Occupancy: 0 people	Design Indoor Temperature: 68.7 deg F (building average)
Actual City: Stevens Village	Design Outdoor Temperature: -54.8 deg F
Weather/Fuel City: Stevens Village	Heating Degree Days: 15,528 deg F-days
Utility Information	
Electric Utility: Stevens Village - Commercial - Sm	Average Annual Cost/kWh: \$1.10/kWh

Annual Energy Cost Estimate											
Description	Space	Water	Clothes	Liabting	Other	Raw Water	Tank	Total			
	Heating	Heating	Drying	Lignting	Electrical	Heat Add	Heat	Cost			
Existing Building	\$19,530	\$5,375	\$513	\$6,461	\$14,289	\$10,919	\$2,649	\$59 <i>,</i> 737			
With Proposed	\$14,903	\$3,601	\$438	\$1,966	\$12,710	\$3,814	\$2,087	\$39,519			
Retrofits											
Savings	\$4,627	\$1,774	\$75	\$4,495	\$1,579	\$7,106	\$563	\$20,218			

Building Benchmarks									
Description	EUI	EUI/HDD) ECI						
Description	(kBtu/Sq.Ft.)	(Btu/Sq.Ft./HDD)	(\$/Sq.Ft.)						
Existing Building	513.5	33.07	\$26.67						
With Proposed Retrofits	445.6	28.70	\$17.64						
EUI: Energy Use Intensity - The annual site energy consumption divided by the structure's conditioned area.									
EUI/HDD: Energy Use Intensity per Heating Degree Day.									
ECI: Energy Cost Index - The total annual cost of energy divided by the square footage of the conditioned space in the									
building.									

Appendix B - Actual Fuel Use versus Modeled Fuel Use

The Orange bars show Actual fuel use, and the Blue bars are AkWarm's prediction of fuel use.

Electricity Fuel Use

#1 Fuel Oil Fuel Use

Heat Recovery Fuel Use

Appendix C - Electrical Demands

Estimated Peak Electrical Demand (kW)												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Current	12.7	12.5	12.3	12.0	8.4	8.3	8.3	8.3	10.0	12.1	12.4	12.6
As Proposed	8.5	8.4	8.2	8.0	6.7	6.6	6.6	6.6	7.1	8.0	8.3	8.5

AkWarmCalc Ver 2.5.3.0, Energy Lib 3/7/2016
